Journal of Nonlinear Science

, Volume 25, Issue 5, pp 1141–1152 | Cite as

Pursuit and Synchronization in Hydrodynamic Dipoles

  • Eva KansoEmail author
  • Alan Cheng Hou Tsang


We study theoretically the behavior of a class of hydrodynamic dipoles. This study is motivated by recent experiments on synthetic and biological swimmers in microfluidic Hele-Shaw type geometries. Under such confinement, a swimmer’s hydrodynamic signature is that of a potential source dipole, and the long-range interactions among swimmers are obtained from the superposition of dipole singularities. Here, we recall the equations governing the positions and orientations of interacting asymmetric swimmers in doubly periodic domains and focus on the dynamics of pairs of swimmers. We obtain two families of “relative equilibria”-type solutions that correspond to pursuit and synchronization of the two swimmers. Interestingly, the pursuit mode is stable for large-tail swimmers, whereas the synchronization mode is stable for large-head swimmers. These results have profound implications on the collective behavior reported in several recent studies on populations of confined microswimmers.


Hydrodynamic interactions Confined microswimmers Stability analysis 

Mathematics Subject Classification

76Z10 76B99 


  1. Beatus, T., Bar-Ziv, R.H., Tlusty, T.: The physics of 2D microfluidic droplet ensembles. Phys. Rep. 516(3), 103–145 (2012)zbMATHCrossRefGoogle Scholar
  2. Bricard, A., Caussin, J.-B., Desreumaux, N., Dauchot, O., Bartolo, D.: Emergence of macroscopic directed motion in populations of motile colloids. Nature 503, 95–98 (2013)CrossRefGoogle Scholar
  3. Brotto, T., Caussin, J.-B., Lauga, E., Bartolo, D.: Hydrodynamics of confined active fuids. Phys. Rev. Lett. 110(3), 038101 (2013)CrossRefGoogle Scholar
  4. Cisneros, L.H., Cortez, R., Dombrowski, C., Goldstein, R.E., Kessler, J.O.: Fluid dynamics of self-propelled microorganisms, from individuals to concentrated populations. Exp. Fluids 43(5), 737–753 (2007)zbMATHCrossRefGoogle Scholar
  5. Couzin, I.D., Krause, J., James, R., Ruxton, G.D., Franks, N.R.: Collective memory and spatial sorting in animal groups. J. Theor. Biol. 218(1), 1–11 (2002)zbMATHMathSciNetCrossRefGoogle Scholar
  6. Desreumaux, N., Florent, N., Lauga, E., Bartolo, D.: Active and driven hydrodynamic crystals. Eur. Phys. J. E Soft Matter Biol. Phys. 35(8), 1–11 (2012)CrossRefGoogle Scholar
  7. Desreumaux, N., Caussin, J.-B., Jeanneret, R., Lauga, E., Bartolo, D.: Hydrodynamic fluctuations in confined particle-laden fluids. Phys. Rev. Lett. 111(11), 118301 (2013)zbMATHCrossRefGoogle Scholar
  8. Jackson, E.L., Lu, H.: Advances in microfluidic cell separation and manipulation. Curr. Opin. Chem. Eng. 2(4), 398–404 (2013)zbMATHCrossRefGoogle Scholar
  9. Kanso, E., Tsang, A.C.H.: Dipole models of self-propelled bodies. Fluid Dyn. Res. 46(6), 061407 (2014)zbMATHCrossRefGoogle Scholar
  10. Kulik, K.N., Tur, A.V., Yanovsky, V.V.: Interaction of point and dipole vortices in an incompressible liquid. Theor. Math. Phys. 162(3), 383–400 (2010)CrossRefGoogle Scholar
  11. Lefauve, A., Saintillan, D.: Globally aligned states and hydrodynamic traffic jams in confined suspensions of active asymmetric particles. Phys. Rev. E 89, 021002 (2014)zbMATHCrossRefGoogle Scholar
  12. Llewellyn Smith, S.G.: How do singularities move in potential flow? Phys. D 240(20), 1644–1651 (2011)zbMATHMathSciNetCrossRefGoogle Scholar
  13. Llewellyn Smith, S.G., Nagem, R.J.: Vortex pairs and dipoles. Regul. Chaot. Dyn. 18(1–2), 194–201 (2013)MathSciNetCrossRefGoogle Scholar
  14. Newton, P.K.: The dipole dynamical system. Discret. Contin. Dyn. Syst. 2005(Suppl), 692–699 (2005)Google Scholar
  15. Richtering, W.: Smart Colloidal Materials, vol. 133. Springer, Berlin (2006)Google Scholar
  16. Saintillan, D., Shelley, M.J.: Instabilities and pattern formation in active particle suspensions: kinetic theory and continuum simulations. Phys. Rev. Lett. 100(17), 178103 (2008)zbMATHCrossRefGoogle Scholar
  17. Sanchez, T., Chen, D.T.N., DeCamp, S.J., Heymann, M., Dogic, Z.: Spontaneous motion in hierarchically assembled active matter. Nature 491(7424), 431–434 (2012)CrossRefGoogle Scholar
  18. Schaller, V., Weber, C., Semmrich, C., Frey, E., Bausch, A.R.: Polar patterns of driven filaments. Nature 467(7311), 73–77 (2010)CrossRefGoogle Scholar
  19. Tchieu, A.A., Kanso, E., Newton, P.K.: The finite-dipole dynamical system. Proc. R Soc. Lond. Ser. A Math. Phys. Eng. Sci. 468(2146), 3006–3026 (2012)zbMATHMathSciNetCrossRefGoogle Scholar
  20. Tsang, A.C.H., Kanso, E.: Dipole interactions in doubly periodic domains. J. Nonlin. Sci. 23, 971–991 (2013)MathSciNetCrossRefGoogle Scholar
  21. Tsang, A.C.H., Kanso, E.: Flagella-induced transitions in the collective behavior of confined microswimmers. Phys. Rev. E 90, 021001 (2014)zbMATHCrossRefGoogle Scholar
  22. Yanovsky, V.V., Tur, A.V., Kulik, K.N.: Singularities motion equations in 2-dimensional ideal hydrodynamics of incompressible fluid. Phys. Lett. A 373(29), 2484–2487 (2009)zbMATHCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2015

Authors and Affiliations

  1. 1.Aerospace and Mechanical EngineeringUniversity of Southern CaliforniaLos AngelesUSA

Personalised recommendations