Advertisement

Journal of Nonlinear Science

, Volume 25, Issue 4, pp 827–859 | Cite as

Differential Equations Modeling Crowd Interactions

  • Raul Borsche
  • Rinaldo M. ColomboEmail author
  • Mauro Garavello
  • Anne Meurer
Article

Abstract

Nonlocal conservation laws are used to describe various realistic instances of crowd behaviors. First, a basic analytic framework is established through an ad hoc well-posedness theorem for systems of nonlocal conservation laws in several space dimensions interacting nonlocally with a system of ODEs. Numerical integrations show possible applications to the interaction of different groups of pedestrians and also with other agents.

Keywords

Nonlocal conservation laws Crowd dynamics Car traffic 

Mathematics Subject Classification

35L65 90B20 

Notes

Acknowledgments

This work was partially supported by the INDAM–GNAMPA project Conservation Laws: Theory and Applications, by the Graduiertenkolleg 1932 “Stochastic Models for Innovations in the Engineering Sciences” and by the Deutsche Forschungsgemeinschaft (DFG) project “Stochastic Models for Innovations in the Engineering Sciences”.

References

  1. Borsche, R., Colombo, R.M., Garavello, M.: On the coupling of systems of hyperbolic conservation laws with ordinary differential equations. Nonlinearity 23(11), 2749–2770 (2010)zbMATHMathSciNetCrossRefGoogle Scholar
  2. Borsche, R., Colombo, R.M., Garavello, M.: Mixed systems: ODEs—balance laws. J. Differ. Equ. 252(3), 2311–2338 (2012)zbMATHMathSciNetCrossRefGoogle Scholar
  3. Borsche, R., Klar, A., Kühn, S., Meurer, A.: Coupling traffic flow networks to pedestrian motion. Math. Models Methods Appl. Sci. 24(2), 359–380 (2014)zbMATHMathSciNetCrossRefGoogle Scholar
  4. Borsche, R., Meurer, A.: Interaction of road networks and pedestrian motion at crosswalks. Discrete Contin. Dyn. Syst. Ser. S 7(3), 363–377 (2014)zbMATHMathSciNetCrossRefGoogle Scholar
  5. Bressan, A., Piccoli, B.: Introduction to the Mathematical Theory of Control, Volume 2 of AIMS Series on Applied Mathematics. American Institute of Mathematical Sciences (AIMS), Springfield, MO (2007)Google Scholar
  6. Colombo, R.M., Garavello, M., Lécureux-Mercier, M.: A class of nonlocal models for pedestrian traffic. Math. Models Methods Appl. Sci. 22(4), 1150023–1150034 (2012)MathSciNetCrossRefGoogle Scholar
  7. Colombo, R.M., Lécureux-Mercier, M.: An analytical framework to describe the interactions between individuals and a continuum. J. Nonlinear Sci. 22(1), 39–61 (2012a)zbMATHMathSciNetCrossRefGoogle Scholar
  8. Colombo, R.M., Lécureux-Mercier, M.: Nonlocal crowd dynamics models for several populations. Acta Math. Sci. Ser. B Engl. Ed. 32(1), 177–196 (2012b)zbMATHMathSciNetCrossRefGoogle Scholar
  9. Colombo, R.M., Pogodaev, N.: Confinement strategies in a model for the interaction between individuals and a continuum. SIAM J. Appl. Dyn. Syst. 11(2), 741–770 (2012)zbMATHMathSciNetCrossRefGoogle Scholar
  10. Cristiani, E., Piccoli, B., Tosin, A.: Multiscale modeling of granular flows with application to crowd dynamics. Multiscale Model. Simul. 9(1), 155–182 (2011)zbMATHMathSciNetCrossRefGoogle Scholar
  11. Etikyala, R., Göttlich, S., Klar, A., Tiwari, S.: Particle methods for pedestrian flow models: from microscopic to nonlocal continuum models. Math. Models Methods Appl. Sci. 24(12), 2503–2523 (2014)Google Scholar
  12. Filippov, A.F.: Differential Equations with Discontinuous Righthand Sides. Kluwer Academic Publishers Group, Dordrecht (1988). Translated from the RussianCrossRefGoogle Scholar
  13. Gazis, D.C., Herman, R., Rothery, R.W.: Nonlinear follow-the-leader models of traffic flow. Oper. Res. 9(4), 545–567 (1961)zbMATHMathSciNetCrossRefGoogle Scholar
  14. Helbing, D., Molnar, P.: Social force model for pedestrian dynamics. Phys. Rev. E 51(5), 4282 (1995)CrossRefGoogle Scholar
  15. Hughes, R.L.: A continuum theory for the flow of pedestrians. Transp. Res. Part B Methodol. 36(6), 507–535 (2002)CrossRefGoogle Scholar
  16. Kružkov, S.N.: First order quasilinear equations with several independent variables. Mat. Sb. (N.S.) 81(123), 228–255 (1970)MathSciNetGoogle Scholar
  17. Lécureux-Mercier, M.: Improved stability estimates on general scalar balance laws. ArXiv e-prints (2010)Google Scholar
  18. LeVeque, R.J.: Finite Volume Methods for Hyperbolic Problems, Cambridge Texts in Applied Mathematics. Cambridge University Press, Cambridge (2002)CrossRefGoogle Scholar
  19. Piccoli, B., Tosin, A.: Pedestrian flows in bounded domains with obstacles. Contin. Mech. Thermodyn. 21, 85–107 (2009). doi: 10.1007/s00161-009-0100-x zbMATHMathSciNetCrossRefGoogle Scholar
  20. Piccoli, B., Tosin, A.: Time-evolving measures and macroscopic modeling of pedestrian flow. Arch. Ration. Mech. Anal. (2010). doi: 10.1007/s00205-010-0366-y
  21. Sethian, J.A.: Fast marching methods. SIAM Rev. 41(2), 199–235 (1999)zbMATHMathSciNetCrossRefGoogle Scholar
  22. Toro, E.F.: Riemann Solvers and Numerical Methods for Fluid Dynamics, 3rd edn. Springer, Berlin (2009). A practical introductionzbMATHCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2015

Authors and Affiliations

  • Raul Borsche
    • 1
  • Rinaldo M. Colombo
    • 2
    Email author
  • Mauro Garavello
    • 3
  • Anne Meurer
    • 1
  1. 1.Fachbereich MathematikTechnische Universität KaiserslauternKaiserslauternGermany
  2. 2.Unità INdAM, c/o DIIUniversità degli studi di BresciaBresciaItaly
  3. 3.Dipartimento di Matematica e ApplicazioniUniversità di Milano BicoccaMilanItaly

Personalised recommendations