Advertisement

Journal of Nonlinear Science

, Volume 25, Issue 3, pp 583–629 | Cite as

Multiscale Geometry of the Olsen Model and Non-classical Relaxation Oscillations

  • Christian Kuehn
  • Peter Szmolyan
Article

Abstract

We study the Olsen model for the peroxidase–oxidase reaction. The dynamics is analyzed using a geometric decomposition based on multiple timescales. The Olsen model is four-dimensional, not in a standard form required by geometric singular perturbation theory and contains multiple small parameters. These three obstacles are the main challenges we resolve by our analysis. Scaling and the blow-up method are used to identify several subsystems. The results presented here provide a rigorous analysis for two oscillatory modes. In particular, we prove the existence of non-classical relaxation oscillations in two cases. The analysis is based on desingularization of lines of transcritical and submanifolds of fold singularities in combination with an integrable relaxation phase. In this context, our analysis also explains an assumption that has been utilized, based purely on numerical reasoning, in a previous bifurcation analysis by Desroches et al. (Discret Contin Dyn Syst S 2(4):807–827, 2009). Furthermore, the geometric decomposition we develop forms the basis to prove the existence of mixed-mode and chaotic oscillations in the Olsen model, which will be discussed in more detail in future work.

Keywords

Olsen model Multiple timescales Relaxation oscillation  Geometric singular perturbation theory Blow-up method Bifurcation delay 

Notes

Acknowledgments

CK would like to thank the Austrian Academy of Sciences (ÖAW) for support via an APART fellowship. CK and PS would like to thank the European Commission (EC/REA) for support by a Marie-Curie International Re-integration Grant.

References

  1. Aguda, B.D., Larter, R.: Periodic-chaotic sequences in a detailed mechanism of the peroxidase-oxidase reaction. J. Am. Chem. Soc. 113, 7913–7916 (1991)CrossRefGoogle Scholar
  2. Aguda, B.D., Larter, R., Clarke, B.L.: Dynamic elements of mixed-mode oscillations and chaos in a peroxidase-oxidase network. J. Chem. Phys. 90(8), 4168–4175 (1989)CrossRefGoogle Scholar
  3. Arnold, V.I.: Encyclopedia of Mathematical Sciences: Dynamical Systems V. Springer, Berlin (1994)CrossRefGoogle Scholar
  4. Baer, S.M., Erneux, T.: Singular Hopf bifurcation to relaxation oscillations I. SIAM J. Appl. Math. 46(5), 721–739 (1986)CrossRefMathSciNetzbMATHGoogle Scholar
  5. Barkley, D.: Slow manifolds and mixed-mode oscillations in the Belousov–Zhabotinskii reaction. J. Chem. Phys. 89(9), 5547–5559 (1988)CrossRefMathSciNetGoogle Scholar
  6. Benoît, E.: Canards et enlacements. Publ. Math. IHES 72, 63–91 (1990)CrossRefzbMATHGoogle Scholar
  7. Benoît, E., Callot, J.L., Diener, F., Diener, M.: Chasse au canards. Collect. Math. 31, 37–119 (1981)Google Scholar
  8. Broer, H.W., Kaper, T.J., Krupa, M.: Geometric desingularization of a cusp singularity in slow–fast systems with applications to Zeeman’s examples. J. Dyn. Differ. Equ. 25(4), 925–958 (2013)CrossRefMathSciNetzbMATHGoogle Scholar
  9. Bronnikova, T.V., Fed’kina, V.R., Schaffer, W.M., Olsen, L.F.: Period-doubling bifurcations and chaos in a detailed model of the peroxidase-oxidase reaction. J. Phys. Chem. 99(23), 9309–9312 (1995)CrossRefGoogle Scholar
  10. Bronnikova, T.V., Schaffer, W.M., Olsen, L.F.: Nonlinear dynamics of the peroxidase-oxidase reaction. I. Bistability and bursting oscillations at low enzyme concentrations. J. Phys. Chem. B 105, 310–321 (2001)CrossRefGoogle Scholar
  11. Cartwright, M.L., Littlewood, J.E.: On non-linear differential equations of second order. I. The equation \(\ddot{y}-k(1-y^2)\dot{y}+y=b\lambda k\cos (\lambda t+a), k\) large. J. Lond. Math. Soc. 20, 180–189 (1945)CrossRefMathSciNetzbMATHGoogle Scholar
  12. Cartwright, M.L., Littlewood, J.E.: On non-linear differential equations of second order. II. The equation \(\ddot{y}-kf(y,\dot{y})+g(y, k)=p(t), k{\>}0, f(y) \ge 1\). Ann. Math. 48(2), 472–494 (1947)CrossRefMathSciNetzbMATHGoogle Scholar
  13. Chiba, H.: Periodic orbits and chaos in fast–slow systems with Bogdanov–Takens type fold points. J. Differ. Equ. 250, 112–160 (2011)CrossRefMathSciNetzbMATHGoogle Scholar
  14. Degn, H., Olsen, L.F., Perram, J.W.: Bistability, oscillation, and chaos in an enzyme reaction. Ann. NY Acad. Sci 316(1), 623–637 (1979)CrossRefGoogle Scholar
  15. Desroches, M., Guckenheimer, J., Kuehn, C., Krauskopf, B., Osinga, H., Wechselberger, M.: Mixed-mode oscillations with multiple time scales. SIAM Rev. 54(2), 211–288 (2012)CrossRefMathSciNetzbMATHGoogle Scholar
  16. Desroches, M., Krauskopf, B., Osinga, H.M.: The geometry of mixed-mode oscillations in the Olsen model for the peroxidase-oxidase reaction. DCDS-S 2(4), 807–827 (2009)CrossRefMathSciNetzbMATHGoogle Scholar
  17. di Bernardo, M., Budd, C.J., Champneys, A.R., Kowalczyk, P.: Piecewise-Smooth Dynamical Systems, volume 163 of Applied Mathematical Sciences. Springer, Berlin (2008)Google Scholar
  18. Diener, M.: The canard unchained or how fast/slow dynamical systems bifurcate. Math. Intell. 6, 38–48 (1984)CrossRefMathSciNetzbMATHGoogle Scholar
  19. Dumortier, F.: Techniques in the theory of local bifurcations: blow-up, normal forms, nilpotent bifurcations, singular perturbations. In: Schlomiuk, D. (ed.) Bifurcations and Periodic Orbits of Vector Fields, pp. 19–73. Kluwer, Dortrecht (1993)CrossRefGoogle Scholar
  20. Dumortier, F., Roussarie, R.: Canard cycles and center manifolds, vol. 121 of Memoirs American Mathematical Society AMS (1996)Google Scholar
  21. Eckhaus, W.: Relaxation oscillations including a standard chase on French ducks. Lect. Notes Math. 985, 449–494 (1983)CrossRefMathSciNetGoogle Scholar
  22. Fenichel, N.: Geometric singular perturbation theory for ordinary differential equations. J. Differ. Equ. 31, 53–98 (1979)CrossRefMathSciNetzbMATHGoogle Scholar
  23. Geest, T., Olsen, L.F., Steinmetz, C.G., Larter, R., Schaffer, : Nonlinear analysis of periodic and chaotic time series from the peroxidase-oxidase reaction. J. Phys. Chem. 97, 8431–8441 (1993)CrossRefGoogle Scholar
  24. Geest, T., Steinmetz, C.G., Larter, R., Olsen, L.F.: Period-doubling bifurcations and chaos in an enzyme reaction. J. Phys. Chem. 96, 5678–5680 (1992)CrossRefGoogle Scholar
  25. Grasman, J.: Asymptotic Methods for Relaxation Oscillations and Applications. Springer, Berlin (1987)CrossRefzbMATHGoogle Scholar
  26. Guckenheimer, J., Holmes, P.: Nonlinear Oscillations, Dynamical Systems, and Bifurcations of Vector Fields. Springer, New York (1983)CrossRefzbMATHGoogle Scholar
  27. Guckenheimer, J., Scheper, C.: A geometric model for mixed-mode oscillations in a chemical system. SIAM J. Appl. Dyn. Syst. 10(1), 92–128 (2011)CrossRefMathSciNetzbMATHGoogle Scholar
  28. Guckenheimer, J., Wechselberger, M., Young, L.-S.: Chaotic attractors of relaxation oscillations. Nonlinearity 19, 701–720 (2006)CrossRefMathSciNetzbMATHGoogle Scholar
  29. Gucwa, I., Szmolyan, P.: Geometric singular perturbation analysis of an autocatalator model. DCDS-S 2(4), 783–806 (2009)CrossRefMathSciNetzbMATHGoogle Scholar
  30. Haiduc, R.: Horseshoes in the forced van der Pol system. Nonlinearity 22, 213–237 (2009)CrossRefMathSciNetzbMATHGoogle Scholar
  31. Harvey, E., Kirk, V., Osinga, H.M., Sneyd, J., Wechselberger, M.: Understanding anomalous delays in a model of intracellular calcium dynamics. Chaos 20, 045104 (2010)CrossRefMathSciNetGoogle Scholar
  32. Hauck, T., Schneider, F.W.: Mixed-mode and quasiperiodic oscillations in the peroxidase-oxidase reaction. J. Phys. Chem. 97, 391–397 (1993)CrossRefGoogle Scholar
  33. Hauck, T., Schneider, F.W.: Chaos in a Farey sequence through period doubling in the peroxidase-oxidase reaction. J. Phys. Chem. 98, 2072–2077 (1994)CrossRefGoogle Scholar
  34. Hauser, M.J.B., Olsen, L.F.: Mixed-mode oscillations and homoclinic chaos in an enzyme reaction. J. Chem. Soc. Faraday Trans. 92(16), 2857–2863 (1996)CrossRefGoogle Scholar
  35. Hauser, M.J.B., Olsen, L.F., Bronnikova, T.V., Schaffer, W.M.: Routes to chaos in the peroxidase-oxidase reaction: period-doubling and period-adding. J. Phys. Chem. B 101, 5075–5083 (1997)CrossRefGoogle Scholar
  36. Hirsch, M.W., Pugh, C.C., Shub, M.: Invariant Manifolds. Springer, Berlin (1977)zbMATHGoogle Scholar
  37. Huber, A., Szmolyan, P.: Geometric singular perturbation analysis of the Yamada model. SIAM J. Appl. Dyn. Syst. 4(3), 607–648 (2005)CrossRefMathSciNetzbMATHGoogle Scholar
  38. Izhikevich, E.: Neural excitability, spiking, and bursting. Int. J. Bif. Chaos 10, 1171–1266 (2000)CrossRefMathSciNetzbMATHGoogle Scholar
  39. Jones, C.K.R.T.: Geometric singular perturbation theory. In: Dynamical Systems (Montecatini Terme, 1994), volume 1609 of Lecture Notes Mathematics, pp. 44–118. Springer, Berlin (1995)Google Scholar
  40. Kaper, T.J.: An introduction to geometric methods and dynamical systems theory for singular perturbation problems. Analyzing multiscale phenomena using singular perturbation methods. In: Cronin, J., O’Malley, R.E. (eds.) Analyzing Multiscale Phenomena Using Singular Perturbation Methods, pp. 85–131. Springer, UK (1999)CrossRefGoogle Scholar
  41. Kaper, T.J., Jones, C.K.R.T.: A primer on the exchange lemma for fast–slow systems. In: Multiple-Time-Scale Dynamical Systems, pp. 65–88. Springer, Berlin (2001)Google Scholar
  42. Kosiuk, I., Szmolyan, P.: Scaling in singular perturbation problems: blowing-up a relaxation oscillator. SIAM J. Appl. Dyn. Syst. 10(4), 1307–1343 (2011)CrossRefMathSciNetzbMATHGoogle Scholar
  43. Kosiuk, I., Szmolyan, P.: A new type of relaxation oscillations in a model of the mitotic oscillator (preprint) (2014)Google Scholar
  44. Krupa, M., Popovic, N., Kopell, N.: Mixed-mode oscillations in three time-scale systems: a prototypical example. SIAM J. Appl. Dyn. Syst. 7(2), 361–420 (2008)CrossRefMathSciNetzbMATHGoogle Scholar
  45. Krupa, M., Szmolyan, P.: Extending geometric singular perturbation theory to nonhyperbolic points: fold and canard points in two dimensions. SIAM J. Math. Anal. 33(2), 286–314 (2001)CrossRefMathSciNetzbMATHGoogle Scholar
  46. Krupa, M., Szmolyan, P.: Extending slow manifolds near transcritical and pitchfork singularities. Nonlinearity 14, 1473–1491 (2001)CrossRefMathSciNetzbMATHGoogle Scholar
  47. Krupa, M., Szmolyan, P.: Geometric analysis of the singularly perturbed planar fold. In: Jones, C.K.R.T., Khibnik, A.I. (eds.) Multiple-Time-Scale Dynamical Systems, The IMA Volumes in Mathematics and its Applications, vol. 122, pp. 89–116. Springer, New York (2001)Google Scholar
  48. Krupa, M., Szmolyan, P.: Relaxation oscillation and canard explosion. J. Differ. Equ. 174, 312–368 (2001)CrossRefMathSciNetzbMATHGoogle Scholar
  49. Krupa, M., Vidal, A., Desroches, M., Clément, F.: Mixed-mode oscillations in a multiple time scale phantom bursting system. SIAM J. Appl. Dyn. Syst. 11(4), 1458–1498 (2012)CrossRefMathSciNetzbMATHGoogle Scholar
  50. Kuehn, C.: On decomposing mixed-mode oscillations and their return maps. Chaos 21(3), 033107 (2011)CrossRefGoogle Scholar
  51. Kuehn, C.: Normal hyperbolicity and unbounded critical manifolds. Nonlinearity 27(6), 1351–1366 (2014)CrossRefMathSciNetzbMATHGoogle Scholar
  52. Larter, R., Bush, C.L., Lonis, T.R., Aguda, B.D.: Multiple steady states, complex oscillations, and the devil’s staircase in the peroxidase-oxidase reaction. J. Chem. Phys. 87(10), 5765–5771 (1987)CrossRefGoogle Scholar
  53. Larter, R., Hemkin, S.: Further refinements of the peroxidase-oxidase oscillator mechanism: Mixed-mode oscillations and chaos. J. Phys. Chem. 100, 18924–18930 (1996)CrossRefGoogle Scholar
  54. Larter, R., Steinmetz, C.G.: Chaos via mixed-mode oscillations. Phil. Trans. R. Soc. Lond. A 337, 291–298 (1991)CrossRefzbMATHGoogle Scholar
  55. Liu, D.: Exchange lemmas for singular perturbation problems with certain turning points. J. Differ. Equ. 167, 134–180 (2000)CrossRefzbMATHGoogle Scholar
  56. Milik, A.: Mixed-mode oscillations in chemical systems. PhD thesis, Vienna University of Technology, Vienna, Austria (1998)Google Scholar
  57. Mishchenko, E.F., Kolesov, YuS, Kolesov, AYu., Rozov, NKh: Asymptotic Methods in Singularly Perturbed Systems. Plenum Press, Berlin (1994)CrossRefzbMATHGoogle Scholar
  58. Mishchenko, E.F., Rozov, NKh: Differential Equations with Small Parameters and Relaxation Oscillations (translated from Russian). Plenum Press, Berlin (1980)CrossRefGoogle Scholar
  59. Neishtadt, A.I.: Persistence of stability loss for dynamical bifurcations. I. Differ. Equ. Transl. 23, 1385–1391 (1987)MathSciNetGoogle Scholar
  60. Neishtadt, A.I.: Persistence of stability loss for dynamical bifurcations. II. Differ. Equ. Transl. 24, 171–176 (1988)MathSciNetGoogle Scholar
  61. Olsen, L.F.: An enzyme reaction with a strange attractor. Phys. Lett. A 94(9), 454–457 (1983)CrossRefGoogle Scholar
  62. Olsen, L.F., Degn, H.: Oscillatory kinetics of the peroxidase-oxidase reaction in an open system. Experimental and theoretical studies. Biochim. Biophys. Acta 523(2), 321–334 (1978)CrossRefGoogle Scholar
  63. Olson, D.L., Williksen, E.P., Scheeline, A.: An experimentally based model of the peroxidase-NADH biochemical oscillator: an enzyme-mediated chemical switch. J. Am. Chem. Soc. 117, 2–15 (1995)CrossRefGoogle Scholar
  64. Rinzel, J.: A Formal Classification of Bursting Mechanisms in Excitable Systems. Proc. Int. Congress Math, Berkeley (1986)Google Scholar
  65. Schaffer, W.M., Bronnikova, T.V., Olsen, L.F.: Nonlinear dynamics of the peroxidase-oxidase reaction. II. Compatibility of an extended model with previously reported model-data correspondences. J. Phys. Chem. 105, 5331–5340 (2001)CrossRefGoogle Scholar
  66. Schecter, S.: Exchange lemmas 2: general exchange lemma. J. Differ. Equ. 245(2), 411–441 (2008)CrossRefMathSciNetzbMATHGoogle Scholar
  67. Scheeline, A., Olson, D.L., Williksen, E.P., Horras, G.A., Klein, M.L., Larter, R.: The peroxidase-oxidase oscillator and its constituent chemistries. Chem. Rev. 97, 739–756 (1997)CrossRefGoogle Scholar
  68. Steinmetz, C.G., Geest, T., Larter, R.: Universality in the peroxidase-oxidase reaction: period doublings, chaos, period three, and unstable limit cycles. J. Phys. Chem. 97, 5649–5653 (1993)CrossRefGoogle Scholar
  69. Steinmetz, C.G., Larter, R.: The quasiperiodic route to chaos in a model of the peroxidase-oxidase reaction. J. Phys. Chem. 94(2), 1388–1396 (1991)CrossRefMathSciNetGoogle Scholar
  70. Szmolyan, P., Wechselberger, M.: Canards in \({\mathbb{R}}^3\). J. Differ. Equ. 177, 419–453 (2001)CrossRefMathSciNetzbMATHGoogle Scholar
  71. Thompson, D.R., Larter, R.: Multiple time scale analysis of two models for the peroxidase-oxidase reaction. Chaos 5(2), 448–457 (1995)CrossRefGoogle Scholar
  72. Tikhonov, A.N.: Systems of differential equations containing small parameters in the derivatives. Mat. Sbornik N. S. 31, 575–586 (1952)MathSciNetGoogle Scholar
  73. van der Pol, B.: A theory of the amplitude of free and forced triode vibrations. Radio Rev. 1, 701–710 (1920)Google Scholar
  74. van der Pol, B.: On relaxation oscillations. Philos. Mag. 7, 978–992 (1926)Google Scholar
  75. Wechselberger, M.: A propos de canards (apropos canards). Trans. Am. Math. Soc. 364, 3289–3309 (2012)CrossRefMathSciNetzbMATHGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2015

Authors and Affiliations

  1. 1.Institute for Analysis and Scientific ComputingVienna University of TechnologyViennaAustria

Personalised recommendations