Journal of Nonlinear Science

, Volume 24, Issue 5, pp 809–855 | Cite as

How Far Can Chemotactic Cross-diffusion Enforce Exceeding Carrying Capacities?

  • Michael WinklerEmail author


We consider nonnegative solutions of the Neumann initial-boundary value problem for the chemotaxis-growth system
$$\begin{aligned} \left\{ \begin{array}{l} u_t=\varepsilon u_{xx} -(uv_x)_x +ru -\mu u^2, \qquad x\in \Omega , \ t>0, \\ 0=v_{xx}-v+u, \qquad x\in \Omega , \ t>0, \end{array} \right. \quad (\star ) \end{aligned}$$
in \(\Omega :=(0,L)\subset \mathbb {R}\) with \(L>0, \varepsilon >0, r\ge 0\) and \(\mu >0\), along with the corresponding limit problem formally obtained upon taking \(\varepsilon \searrow 0\). For the latter hyperbolic–elliptic problem, we establish results on local existence and uniqueness within an appropriate generalized solution concept. In this context we shall moreover derive an extensibility criterion involving the norm of \(u(\cdot ,t)\) in \(L^\infty (\Omega )\). This will enable us to conclude that in this case \(\varepsilon =0\),
  • if \(\mu \ge 1\), then all solutions emanating from sufficiently regular initial data are global in time, whereas

  • if \(\mu <1\), then some solutions blow-up in finite time.

The latter will reveal that the original parabolic–elliptic problem (\(\star \)), though known to possess no such exploding solutions, exhibits the following property of dynamical structure generation: given any \(\mu \in (0,1)\), one can find smooth bounded initial data with the property that for each prescribed number \(M>0\) the solution of (\(\star \)) will attain values above \(M\) at some time, provided that \(\varepsilon \) is sufficiently small. In particular, this means that the associated carrying capacity given by \(\frac{r}{\mu }\) can be exceeded during evolution to an arbitrary extent. We finally present some numerical simulations that illustrate this type of solution behavior and that, moreover, inter alia, indicate that achieving large population densities is a transient dynamical phenomenon occurring on intermediate time scales only.


Chemotaxis Logistic source Blow-up Hyperbolic-elliptic system 

Mathematics Subject Classification

Primary: 35B40 92C17 35K55 Secondary: 35F30 35A07 


  1. Aida, M., Tsujikawa, T., Efendiev, M., Yagi, A., Mimura, M.: Lower estimate of the attractor dimension for a chemotaxis growth system. J. London Math. Soc. 74(2), 453–474 (2006)MathSciNetCrossRefzbMATHGoogle Scholar
  2. Biler, P.: Local and global solvability of come parabolic systems modeling chemotaxis. Adv. Math. Sci. Appl. 8, 715–743 (1998)MathSciNetzbMATHGoogle Scholar
  3. Bournaveas, N., Calvez, V., Gutiérrez, S., Perthame, B.: Global existence for a Kinetic model of chemotaxis via dispersion and strichartz estimates. Commun. Part. Differ. Equ. 33(1), 79–95 (2008)CrossRefzbMATHGoogle Scholar
  4. Carrillo, J.A., Hittmeir, S., Jüngel, A.: Cross diffusion and nonlinear diffusion preventing blow up in the Keller–Segel model. Math. Models Methods Appl. Sci. 22, 1250041 (2012)MathSciNetCrossRefGoogle Scholar
  5. Chaplain, M.A.J., Lolas, G.: Mathematical modelling of cancer invasion of tissue: the role of the urokinase plasminogen activation system. Math. Mod. Methods Appl. Sci. 15, 1685–1734 (2005)MathSciNetCrossRefzbMATHGoogle Scholar
  6. Childress, S., Percus, J.K.: Nonlinear aspects of chemotaxis. Math. Biosci. 56, 217–237 (1981)MathSciNetCrossRefzbMATHGoogle Scholar
  7. Cieślak, T., Laurençot, P.H.: Finite time blow-up for a one-dimensional quasilinear parabolic–parabolic chemotaxis system. Ann. Inst. Henri Poincaré, Anal. Non Linéaire 27(1), 437–446 (2010)CrossRefzbMATHGoogle Scholar
  8. Cieślak, T., Laurençot, Ph.: Global existence vs. blowup in a one-dimensional Smoluchowski-Poisson system. Escher, Joachim (ed.) et al., Parabolic problems. The Herbert Amann Festschrift. Based on the conference on nonlinear parabolic problems held in celebration of Herbert Amann’s 70th birthday at the Banach Center in Bedlewo, Poland, May 1016, 2009. Birkhäuser, Basel. Progress in Nonlinear Differential Equations and Their Applications 80, 95–109 (2011).Google Scholar
  9. Cieślak, T., Stinner, C.: Finite-time blowup and global-in-time unbounded solutions to a parabolic–parabolic quasilinear Keller–Segel system in higher dimensions. J. Differ. Equ. 252(10), 5832–5851 (2012)CrossRefzbMATHGoogle Scholar
  10. Cieślak, T., Winkler, M.: Finite-time blow-up in a quasilinear system of chemotaxis. Nonlinearity 21, 1057–1076 (2008)MathSciNetCrossRefzbMATHGoogle Scholar
  11. Eberl, H.J., Parker, D.F., van Loosdrecht, M.C.M.: A new deterministic spatio-temporal continuum model for biofilm development. J. Theor. Med. 3(3), 161175 (2001)CrossRefGoogle Scholar
  12. Funaki, M., Mimura, M., Tsujikawa, T.: Travelling front solutions arising in the chemotaxis-growth model. Interfaces Free Bound. 8(2), 223–245 (2006)MathSciNetCrossRefzbMATHGoogle Scholar
  13. Hašcovec, J., Schmeiser, C.: Stochastic particle approximation for measure valued solutions of the 2D Keller–Segel system. J. Stat. Phys. 135, 133–151 (2009)MathSciNetCrossRefGoogle Scholar
  14. Henry, D.: Geometric Theory of Semilinear Parabolic Equations. Springer, Berlin (1981)zbMATHGoogle Scholar
  15. Herrero, M.A., Velázquez, J.J.L.: A blow-up mechanism for a chemotaxis model. Ann. Scu. Norm. Super. Pisa Cl. Sci. 24, 663–683 (1997)Google Scholar
  16. Hillen, T., Painter, K.J.: A user’s guide to PDE models for chemotaxis. J. Math. Biol. 58(1), 183–217 (2009)MathSciNetCrossRefzbMATHGoogle Scholar
  17. Horstmann, D.: From 1970 until present: the Keller–Segel model in chemotaxis and its consequences I. Jahresber. DMV 105, 103–165 (2003)MathSciNetzbMATHGoogle Scholar
  18. Jäger, W., Luckhaus, S.: On explosions of solutions to a system of partial differential equations modelling chemotaxis. Trans. Am. Math. Soc. 329, 819824 (1992)CrossRefGoogle Scholar
  19. Keller, E.F., Segel, L.A.: Initiation of slime mold aggregation viewed as an instability. J. Theor. Biol. 26, 399–415 (1970)CrossRefzbMATHGoogle Scholar
  20. Kuto, K., Osaki, K., Sakurai, T., Tsujikawa, T.: Spatial pattern formation in a chemotaxis-diffusion-growth model. Physica D 241, 1629–1639 (2012)MathSciNetCrossRefzbMATHGoogle Scholar
  21. Maini, P.K., Myerscough, M.R., Winters, K.H., Murray, J.D.: Bifurcating spatially heterogeneous solutions in a chemotaxis model for biological pattern generation. Bull. Math. Biol. 53(5), 701719 (1991)CrossRefGoogle Scholar
  22. Meral, G., Stinner, C., Surulescu, C.: On a multiscale model involving cell contractivity and its effects on tumor invasion (2014)Google Scholar
  23. Mizoguchi, N., Winkler, M.: Is finite-time blow-up a generic phenomenon in the two-dimensional Keller–Segel system? (2014)Google Scholar
  24. Nadin, G., Perthame, B., Ryzhik, L.: Traveling waves for the Keller–Segel system with Fisher birth terms. Interfaces Free Bound. 10(4), 517–538 (2008)MathSciNetCrossRefzbMATHGoogle Scholar
  25. Nagai, T.: Blowup of nonradial solutions to parabolicelliptic systems modeling chemotaxis in two-dimensional domains. J. Inequal. Appl. 6, 37–55 (2001)MathSciNetzbMATHGoogle Scholar
  26. Nakaguchi, E., Osaki, K.: Global existence of solutions to a parabolic–parabolic system for chemotaxis with weak degradation. Nonlinear Anal. TMA 74(1), 286–297 (2011)MathSciNetCrossRefzbMATHGoogle Scholar
  27. Osaki, K., Tsujikawa, T., Yagi, A., Mimura, M.: Exponential attractor for a chemotaxis-growth system of equations. Nonlinear Anal. 51, 119–144 (2002)MathSciNetCrossRefzbMATHGoogle Scholar
  28. Osaki, K., Yagi, A.: Global existence for a chemotaxis-growth system in \({\mathbb{R}}^2\). Adv. Math. Sci. Appl. 12(2), 587–606 (2002)MathSciNetzbMATHGoogle Scholar
  29. Othmer, H.G., Stevens, A.: Aggregation, blowup and collapse: the ABCs of taxis in reinforced random walks. SIAM J. Appl. Math. 57, 10441081 (1997)MathSciNetGoogle Scholar
  30. Painter, K.J., Hillen, T.: Volume-filling and quroum-sensing in models for chemosensitive movement. Can. Appl. Am. Quart. 10(4), 501–543 (2002)MathSciNetzbMATHGoogle Scholar
  31. Painter, K.J., Hillen, T.: Spatio-temporal chaos in a chemotaxis model. Physica D 240, 363–375 (2011)CrossRefzbMATHGoogle Scholar
  32. Painter, K.J., Maini, P.K., Othmer, H.G.: Complex spatial patterns in a hybrid chemotaxis reaction-diffusion model. J. Math. Biol. 41(4), 285314 (2000)MathSciNetCrossRefGoogle Scholar
  33. Perthame, B.: Transport Equations in Biology. Birkhäuser-Verlag, Basel (2007)zbMATHGoogle Scholar
  34. Poupaud, F.: Diagonal defect measures, adhesion dynamics and Euler equation. Methods Appl. Anal. 9(4), 533–561 (2002)MathSciNetzbMATHGoogle Scholar
  35. Szymańska, Z., Morales, Rodrigo C., Lachowicz, M., Chaplain, M.A.: Mathematical modelling of cancer invasion of tissue: the role and effect of nonlocal interactions. Math. Mod. Methods Appl. Sci. 19, 257–281 (2009)CrossRefzbMATHGoogle Scholar
  36. Tello, J.I., Winkler, M.: A chemotaxis system with logistic source. Commun. Partial Differ. Equ. 32(6), 849–877 (2007)MathSciNetCrossRefzbMATHGoogle Scholar
  37. Temam, R.: Navier–Stokes Equations: Theory and Numerical Analysis. Studies in Mathematics and its Applications, vol. 2. North-Holland, Amsterdam (1977)Google Scholar
  38. Winkler, M.: Boundedness in the higher-dimensional parabolic–parabolic chemotaxis system with logistic source. Commun. Partial Differ. Equ. 35, 1516–1537 (2010)CrossRefzbMATHGoogle Scholar
  39. Winkler, M.: Aggregation vs. global diffusive behavior in the higher-dimensional Keller–Segel model. J. Differ. Equ. 248, 2889–2905 (2010)CrossRefzbMATHGoogle Scholar
  40. Winkler, M.: Does a volume-filling effect always prevent chemotactic collapse? Math. Methods Appl. Sci. 33, 12–24 (2010)MathSciNetzbMATHGoogle Scholar
  41. Winkler, M.: Blow-up in a higher-dimensional chemotaxis system despite logistic growth restriction. J. Math. Anal. Appl. 384, 261–272 (2011)MathSciNetCrossRefzbMATHGoogle Scholar
  42. Winkler, M.: Finite-time blow-up in the higher-dimensional parabolic–parabolic Keller–Segel system. J. Math. Pures Appl. 100, 748–767 (2013)Google Scholar
  43. Winkler, M., Djie, K.: Boundedness and finite-time collapse in a chemotaxis system with volume-filling effect. Nonlinear Anal. TMA 72(2), 1044–1064 (2010)MathSciNetCrossRefzbMATHGoogle Scholar
  44. Woodward, D.E., Tyson, R., Myerscough, M.R., Murray, J.D., Budrene, E.O., Berg, H.C.: Spatiotemporal patterns generated by Salmonella typhimurium. Biophys. J. 68(5), 21812189 (1995)CrossRefGoogle Scholar
  45. Wrzosek, D.: Volume filling effect in modelling chemotaxis. Math. Model. Nat. Phenom. 5, 123–147 (2010)MathSciNetCrossRefzbMATHGoogle Scholar
  46. Yagi, A.: Norm behavior of solutions to a parabolic system of chemotaxis. Math. Jpn. 45, 241–265 (1997)MathSciNetzbMATHGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2014

Authors and Affiliations

  1. 1.Institut für MathematikUniversität PaderbornPaderbornGermany

Personalised recommendations