Advertisement

Journal of Nonlinear Science

, Volume 24, Issue 4, pp 579–632 | Cite as

On the Rigid-Lid Approximation for Two Shallow Layers of Immiscible Fluids with Small Density Contrast

  • Vincent Duchêne
Article

Abstract

The rigid-lid approximation is a commonly used simplification in the study of density-stratified fluids in oceanography. Roughly speaking, one assumes that the displacements of the surface are negligible compared with interface displacements. In this paper, we offer a rigorous justification of this approximation in the case of two shallow layers of immiscible fluids with constant and quasi-equal mass density. More precisely, we control the difference between the solutions of the Cauchy problem predicted by the shallow-water (Saint-Venant) system in the rigid-lid and free-surface configuration. We show that in the limit of a small density contrast, the flow may be accurately described as the superposition of a baroclinic (or slow) mode, which is well predicted by the rigid-lid approximation, and a barotropic (or fast) mode, whose initial smallness persists for large time. We also describe explicitly the first-order behavior of the deformation of the surface and discuss the case of a nonsmall initial barotropic mode.

Keywords

Internal waves Rigid-lid approximation Boussinesq approximation Asymptotic analysis Hyperbolic system 

Notes

Acknowledgments

The author is grateful to Christophe Cheverry, Jean-François Coulombel, and Frédéric Rousset for helpful advice and stimulating discussions. This work was partially supported by Project ANR-13-BS01-0003-01 DYFICOLTI.

References

  1. Abgrall, R., Karni, S.: Two-layer shallow water system: a relaxation approach. SIAM J. Sci. Comput. 31(3), 1603–1627 (2009)CrossRefzbMATHMathSciNetGoogle Scholar
  2. Alinhac, S., Gérard, P.: Opérateurs pseudo-différentiels et théorème de Nash-Moser. Savoirs Actuels (1991)Google Scholar
  3. Barros, R., Gavrilyuk, S.L., Teshukov, V.M.: Dispersive nonlinear waves in two-layer flows with free surface. I. Model derivation and general properties. Stud. Appl. Math. 119(3), 191–211 (2007)CrossRefMathSciNetGoogle Scholar
  4. Benjamin, T.B.: Internal waves of finite amplitude and permanent form. J. Fluid Mech. 25(2), 241–270 (1966)CrossRefzbMATHMathSciNetGoogle Scholar
  5. Bona, J.L., Colin, T., Lannes, D.: Long wave approximations for water waves. Arch. Ration. Mech. Anal. 178(3), 373–410 (2005)CrossRefzbMATHMathSciNetGoogle Scholar
  6. Bona, J.L., Lannes, D., Saut, J.-C.: Asymptotic models for internal waves. J. Math. Pures Appl. (9) 89(6), 538–566 (2008)Google Scholar
  7. Bresch, D., Renardy, M.: Well-posedness of two-layer shallow water flow between two horizontal rigid plates. Nonlinearity 24(4), 1081–1088 (2011)CrossRefzbMATHMathSciNetGoogle Scholar
  8. Browning, G., Kreiss, H.-O.: Problems with different time scales for nonlinear partial differential equations. SIAM J. Appl. Math. 42(4), 704–718 (1982)CrossRefzbMATHMathSciNetGoogle Scholar
  9. Castro-Díaz, M.J., Fernández-Nieto, E.D., González-Vida, J.M., Parés-Madroñal, C.: Numerical treatment of the loss of hyperbolicity of the two-layer shallow-water system. J. Sci. Comput. 48(1–3), 16–40 (2011)CrossRefzbMATHMathSciNetGoogle Scholar
  10. Choi, W., Camassa, R.: Weakly nonlinear internal waves in a two-fluid system. J. Fluid Mech. 313, 83–103 (1996)CrossRefzbMATHMathSciNetGoogle Scholar
  11. Craig, W., Guyenne, P., Kalisch, H.: Hamiltonian long-wave expansions for free surfaces and interfaces. Commun. Pure Appl. Math. 58(12), 1587–1641 (2005)CrossRefzbMATHMathSciNetGoogle Scholar
  12. Craig, W., Guyenne, P., Sulem, C.: Coupling between internal and surface waves. Nat. Hazards 57(3), 617–642 (2010)CrossRefGoogle Scholar
  13. de Saint-Venant, B.: Théorie du mouvement non-permanent des eaux, avec application aux crues des rivières et à l’introduction des marées dans leur lit. C. R. Acad. Sci. Paris 73:147–154 (1871)Google Scholar
  14. Duchêne, V.: Asymptotic shallow water models for internal waves in a two-fluid system with a free surface. SIAM J. Math. Anal. 42(5), 2229–2260 (2010)CrossRefzbMATHMathSciNetGoogle Scholar
  15. Duchêne, V.: Boussinesq/Boussinesq systems for internal waves with a free surface, and the KdV approximation. M2AN. Math. Model. Numer. Anal. 46, 145–185 (2011)CrossRefGoogle Scholar
  16. Duchêne, V.: Decoupled and unidirectional asymptotic models for the propagation of internal waves. M3AS. Math. Models Methods Appl. Sci. 24(01) (2014)Google Scholar
  17. Gill, A.E.: Atmosphere-Ocean Dynamics. International Geophysics Series, vol. 30. Academic Press (1982)Google Scholar
  18. Grimshaw, R., Pelinovsky, E., Poloukhina, O.: Higher-order korteweg-de vries models for internal solitary waves in a stratified shear flow with a free surface. Nonlinear Processes Geophys. 9, 221–235 (2002)CrossRefGoogle Scholar
  19. Guyenne, P., Lannes, D., Saut, J.-C.: Well-posedness of the Cauchy problem for models of large amplitude internal waves. Nonlinearity 23(2), 237–275 (2010)CrossRefzbMATHMathSciNetGoogle Scholar
  20. Helfrich, K.R., Melville, W.K.: Long nonlinear internal waves. Annu. Rev. Fluid Mech. 38, 395–425 (2006)Google Scholar
  21. Jackson, C.R.: An atlas of internal solitary-like waves and their properties (2004). Accessible at url URL http://www.internalwaveatlas.com/Atlas2_index.html
  22. Kato, T.: The Cauchy problem for quasi-linear symmetric hyperbolic systems. Arch. Ration. Mech. Anal. 58(3), 181–205 (1975)CrossRefzbMATHGoogle Scholar
  23. Kato, T.: Perturbation theory for linear operators. Classics in Mathematics. Springer, Berlin (1995). Reprint of the 1980 editionGoogle Scholar
  24. Kato, T., Ponce, G.: Commutator estimates and the Euler and Navier-Stokes equations. Commun. Pure Appl. Math. 41(7), 891–907 (1988)CrossRefzbMATHMathSciNetGoogle Scholar
  25. Klainerman, S., Majda, A.: Singular limits of quasilinear hyperbolic systems with large parameters and the incompressible limit of compressible fluids. Commun. Pure Appl. Math. 34(4), 481–524 (1981)CrossRefzbMATHMathSciNetGoogle Scholar
  26. Lannes, D.: Secular growth estimates for hyperbolic systems. J. Differ. Equ. 190(2), 466–503 (2003)CrossRefzbMATHMathSciNetGoogle Scholar
  27. Lannes, D.: Sharp estimates for pseudo-differential operators with symbols of limited smoothness and commutators. J. Funct. Anal. 232(2), 495–539 (2006)CrossRefzbMATHMathSciNetGoogle Scholar
  28. Lannes, D.: A stability criterion for two-fluid interfaces and applications. Arch. Ration. Mech. Anal. 208(2), 481–567 (2013)CrossRefzbMATHMathSciNetGoogle Scholar
  29. Lannes, D.: The water waves problem. Mathematical Surveys and Monographs, vol. 188. American Mathematical Society (2013)Google Scholar
  30. Leonardi, D.: Internal and Surface Waves in a Two-Layer Fluid. PhD thesis, University of Illinois (2011)Google Scholar
  31. Long, R.R.: On the Boussinesq approximation and its role in the theory of internal waves. Tellus 17(1), 46–52 (1965)CrossRefMathSciNetGoogle Scholar
  32. Métivier, G.: Para-differential calculus and applications to the Cauchy problem for nonlinear systems. Centro di Ricerca Matematica Ennio De Giorgi (CRM) Series, vol. 5 (2008)Google Scholar
  33. Schneider, G., Wayne, C.E.: The long-wave limit for the water wave problem. I. The case of zero surface tension. Commun. Pure Appl. Math. 53(12), 1475–1535 (2000)CrossRefzbMATHMathSciNetGoogle Scholar
  34. Shampine, L.F., Reichelt, M.W.: The MATLAB ODE suite. SIAM J. Sci. Comput. 18(1), 1–22 (1997)CrossRefzbMATHMathSciNetGoogle Scholar
  35. Stewart, A.L., Dellar, P.J.: Multilayer shallow water equations with complete coriolis force. Part 3. Hyperbolicity and stability under shear. J. Fluid Mech. 723, 289–317, 5 (2013)Google Scholar
  36. Taylor, M.E.: Partial differential equations. III Nonlinear equations. Applied Mathematical Sciences, vol. 117. Springer (1997)Google Scholar
  37. Trefethen, L.N.: Spectral methods in MATLAB. Software, Environments, and Tools. Society for Industrial and Applied Mathematics (SIAM), vol. 10 (2000).Google Scholar

Copyright information

© Springer Science+Business Media New York 2014

Authors and Affiliations

  1. 1.Université de Rennes, Institut de Recherche Mathématique deRennesFrance

Personalised recommendations