Journal of Nonlinear Science

, Volume 24, Issue 2, pp 277–304 | Cite as

Continuous Data Assimilation Using General Interpolant Observables

  • Abderrahim Azouani
  • Eric OlsonEmail author
  • Edriss S. Titi


We present a new continuous data assimilation algorithm based on ideas that have been developed for designing finite-dimensional feedback controls for dissipative dynamical systems, in particular, in the context of the incompressible two-dimensional Navier–Stokes equations. These ideas are motivated by the fact that dissipative dynamical systems possess finite numbers of determining parameters (degrees of freedom) such as modes, nodes and local spatial averages which govern their long-term behavior. Therefore, our algorithm allows the use of any type of measurement data for which a general type of approximation interpolation operator exists. Under the assumption that the observational measurements are free of noise, our main result provides conditions, on the finite-dimensional spatial resolution of the collected data, sufficient to guarantee that the approximating solution, obtained by our algorithm from the measurement data, converges to the unknown reference solution over time. Our algorithm is also applicable in the context of signal synchronization in which one can recover, asymptotically in time, the solution (signal) of the underlying dissipative system that is corresponding to a continuously transmitted partial data.


Determining modes Volume elements and nodes Continuous data assimilation Two-dimensional Navier–Stokes equations Signal synchronization 

Mathematics Subject Classification

35Q30 93C20 37C50 76B75 34D06 



The work of A.A. is supported in part by the DFG grants SFB-910 and SFB-947. E.S.T. is thankful to the kind hospitality of the Freie Universität Berlin, where this work was initiated. E.S.T. also acknowledges the partial support of the Alexander von Humboldt Stiftung Foundation, the Minerva Stiftung Foundation, and the National Science Foundation grants DMS-1009950, DMS-1109640 and DMS-1109645. We would also like to thank the anonymous referees for their careful reading and constructive comments.


  1. Aubin, J.P.: Un théorème de compacité. C.R. Acad. Sci. Paris Sér. I Math. 256, 5042–5044 (1963) zbMATHMathSciNetGoogle Scholar
  2. Azouani, A., Titi, E.S.: Feedback control of nonlinear dissipative systems by finite determining parameters—a reaction-diffusion paradigm (2013). arXiv:1301.6992
  3. Bessaih, H., Olson, E., Titi, E.S.: Continuous data assimilation of stochastically noisy data. In preparation (2013) Google Scholar
  4. Blömker, D., Law, K.J.H., Stuart, A.M., Zygalakis, K.C.: Accuracy and stability of the continuous-times 3DVAR filter for the Navier–Stokes equations. Nonlinearity 26, 2193–2219 (2013) CrossRefzbMATHMathSciNetGoogle Scholar
  5. Brenner, S.C., Scott, R.: The Mathematical Theory of Finite Element Methods. Springer, Berlin (2007) Google Scholar
  6. Brézis, H., Gallouet, T.: Nonlinear Schrödinger evolution equations. Nonlinear Anal. 4(4), 677–681 (1980) CrossRefzbMATHMathSciNetGoogle Scholar
  7. Browning, G.L., Henshaw, W.D., Kreiss, H.O.: A numerical investigation of the interaction between the large and small scales of the two-dimensional incompressible Navier–Stokes equations. Research Report LA-UR-98-1712, Los Alamos National Laboratory, (1998) Google Scholar
  8. Cao, C., Titi, E.S.: Global well-posedness of the three-dimensional viscous primitive equations of large scale ocean and atmosphere dynamics. Ann. Math. 166(1), 245–267 (2007) CrossRefzbMATHMathSciNetGoogle Scholar
  9. Cheskidov, A., Holm, D.D., Olson, E., Titi, E.S.: On a Leray-alpha model of turbulence. Proc. R. Soc. Lond., Ser. A Math. Phys. Eng. Sci. 461(2055), 629–649 (2005) CrossRefzbMATHMathSciNetGoogle Scholar
  10. Cockburn, B., Jones, D.A., Titi, E.S.: Estimating the number of asymptotic degrees of freedom for nonlinear dissipative systems. Math. Comput. 66(219), 1073–1087 (1997) CrossRefzbMATHMathSciNetGoogle Scholar
  11. Constantin, P., Foias, C.: Navier–Stokes Equations. University of Chicago Press, Chicago (1988) zbMATHGoogle Scholar
  12. Daley, R.: Atmospheric Data Analysis. Cambridge Atmospheric and Space Science Series. Cambridge University Press, Cambridge (1991) Google Scholar
  13. Dascaliuc, R., Foias, C., Jolly, M.S.: Estimates on enstrophy, palinstrophy, and invariant measures for 2-D turbulence. J. Differ. Equ. 248, 792–819 (2010) CrossRefzbMATHMathSciNetGoogle Scholar
  14. Foias, C., Prodi, G.: Sur le comportement global des solutions non-stationnaires des équations de Navier-Stokes en dimension 2. Rend. Semin. Mat. Univ. Padova 39, 1–34 (1967) MathSciNetGoogle Scholar
  15. Foias, C., Temam, R.: Sur la détermination d’un écoulement fluide par des observations discrètes. C. R. Acad. Sci. Paris Sér. I Math. 295(3), 239–241 (1982). The continuation in 295(9), 523–525 (1982) zbMATHMathSciNetGoogle Scholar
  16. Foias, C., Temam, R.: Determination of the solutions of the Navier–Stokes equations by a set of nodal values. Math. Comput. 43(167), 117–133 (1984) CrossRefzbMATHMathSciNetGoogle Scholar
  17. Foias, C., Titi, E.S.: Determining nodes, finite difference schemes and inertial manifolds. Nonlinearity 4(1), 135–153 (1991) CrossRefzbMATHMathSciNetGoogle Scholar
  18. Foias, C., Manley, O., Rosa, R., Temam, R.: Navier–Stokes Equations and Turbulence. Encyclopedia of Mathematics and Its Applications, vol. 83. Cambridge University Press, Cambridge (2001) CrossRefzbMATHGoogle Scholar
  19. Foias, C., Jolly, M., Kravchenko, R., Titi, E.S.: A determining form for the 2D Navier-Stokes equations—the Fourier modes case. J. Math. Phys. 53, 115623 (2012) CrossRefMathSciNetGoogle Scholar
  20. Gesho, M.: A numerical study of continuous data assimilation using nodal points in space for the two-dimensional Navier–Stokes equations. Masters Thesis, University of Nevada, Department of Mathematics and Statistics (2013) Google Scholar
  21. Hayden, K., Olson, E., Titi, E.S.: Discrete data assimilation in the Lorenz and 2d Navier–Stokes equations. Physica D: Nonlinear Phenom. 240(18), 1416–1425 (2011) CrossRefzbMATHMathSciNetGoogle Scholar
  22. Henshaw, W.D., Kreiss, H.O., Yström, J.: Numerical experiments on the interaction between the large and small-scale motions of the Navier–Stokes equations. Multiscale Model. Simul. 1(1), 119–149 (2003) CrossRefzbMATHMathSciNetGoogle Scholar
  23. Jones, D.A., Titi, E.S.: Determining finite volume elements for the 2D Navier–Stokes equations. Physica D 60, 165–174 (1992) CrossRefzbMATHMathSciNetGoogle Scholar
  24. Jones, D.A., Titi, E.S.: Upper bounds on the number of determining modes, nodes and volume elements for the Navier–Stokes equations. Indiana Univ. Math. J. 42(3), 875–887 (1993) CrossRefzbMATHMathSciNetGoogle Scholar
  25. Korn, P.: Data assimilation for the Navier–Stokes-α equations. Physica D 238, 1957–1974 (2009) CrossRefzbMATHMathSciNetGoogle Scholar
  26. Lions, J.L., Magenes, E.: Nonhomogeneous Boundary Value Problems. Springer, Berlin (1972) CrossRefGoogle Scholar
  27. Olson, E., Titi, E.S.: Determining modes for continuous data assimilation in 2D turbulence. J. Stat. Phys. 113(5–6), 799–840 (2003) CrossRefzbMATHMathSciNetGoogle Scholar
  28. Olson, E., Titi, E.S.: Determining modes and Grashof number in 2D turbulence. Theor. Comput. Fluid Dyn. 22(5), 327–339 (2008) CrossRefzbMATHGoogle Scholar
  29. Robinson, J.: In: Infinite-Dimensional Dynamical Systems. Cambridge Texts in Applied Mathematics (2001) Google Scholar
  30. Temam, R.: Navier–Stokes Equations and Nonlinear Functional Analysis. CBMS Regional Conference Series, vol. 41. SIAM, Philadelphia (1983) Google Scholar
  31. Temam, R.: Navier–Stokes Equations: Theory and Numerical Analysis, revised edn. AMS/Chelsea, New York (2001) Google Scholar
  32. Titi, E.S.: On a criterion for locating stable stationary solutions to the Navier–Stokes equations. Nonlinear Anal. Theory Methods Appl. 11, 1085–1102 (1987) CrossRefzbMATHMathSciNetGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2013

Authors and Affiliations

  • Abderrahim Azouani
    • 1
  • Eric Olson
    • 2
    Email author
  • Edriss S. Titi
    • 3
    • 4
  1. 1.Freie Universität BerlinInstitute für Mathematik IBerlinGermany
  2. 2.Department of Mathematics and StatisticsUniversity of NevadaRenoUSA
  3. 3.Department of Mathematics and Department of Mechanical and Aerospace EngineeringUniversity of CaliforniaIrvineUSA
  4. 4.The Department of Computer Science and Applied MathematicsWeizmann Institute of ScienceRehovotIsrael

Personalised recommendations