Advertisement

Journal of Nonlinear Science

, Volume 22, Issue 4, pp 553–597 | Cite as

Invariant Higher-Order Variational Problems II

  • François Gay-Balmaz
  • Darryl D. HolmEmail author
  • David M. Meier
  • Tudor S. Ratiu
  • François-Xavier Vialard
Article

Abstract

Motivated by applications in computational anatomy, we consider a second-order problem in the calculus of variations on object manifolds that are acted upon by Lie groups of smooth invertible transformations. This problem leads to solution curves known as Riemannian cubics on object manifolds that are endowed with normal metrics. The prime examples of such object manifolds are the symmetric spaces. We characterize the class of cubics on object manifolds that can be lifted horizontally to cubics on the group of transformations. Conversely, we show that certain types of non-horizontal geodesic on the group of transformations project to cubics. Finally, we apply second-order Lagrange–Poincaré reduction to the problem of Riemannian cubics on the group of transformations. This leads to a reduced form of the equations that reveals the obstruction for the projection of a cubic on a transformation group to again be a cubic on its object manifold.

Keywords

Hamilton’s principle Other variational principles Constrained dynamics Higher-order theories Optimal control problems involving partial differential equations 

Mathematics Subject Classification

70H25 70H30 70H45 70H50 49J20 

Notes

Acknowledgements

We thank B. Doyon, P. Michor, L. Noakes and A. Trouvé for encouraging comments and insightful remarks during the course of this work. We also thank the referees for encouragement and informative comments. In particular, we thank one of the referees for directing us to Krakowski (2002). DDH, DMM and FXV are grateful for partial support by the Royal Society of London Wolfson Research Merit Award and the European Research Council Advanced Grant. FGB has been partially supported by a “Projet Incitatif de Recherche” contract from the Ecole Normale Supérieure de Paris. TSR was partially supported by Swiss NSF grant 200020-126630 and by the government grant of the Russian Federation for support of research projects implemented by leading scientists, Lomonosov Moscow State University under the agreement No. 11.G34.31.0054.

References

  1. Alekseevky, D., Kriegl, A., Losik, M., Michor, P.W.: The Riemannian geometry of orbit spaces—the metric, geodesics, and integrable systems. Publ. Math. (Debr.) 62, 247–276 (2003) Google Scholar
  2. Arnold, V.I.: Sur la géométrie différentielle des groupes de Lie de dimension infinie et ses applications à l’hydrodynamique des fluides parfaits. Ann. Inst. Fourier 16(1), 319–361 (1966) MathSciNetCrossRefGoogle Scholar
  3. Atiyah, M.F.: Convexity and commuting Hamiltonians. Bull. Lond. Math. Soc. 18, 305–315 (1982) Google Scholar
  4. Beg, M.F., Khan, A.: Representation of time-varying shapes in the large deformation diffeomorphic metric mapping framework. In: International Symposium of Biomedical Imaging (2008) Google Scholar
  5. Belta, C., Kumar, V.: New metrics for rigid body motion interpolation. In: Proceedings of the Ball 2000 Symposium, University of Cambridge, UK (2000) Google Scholar
  6. Besse, A.: Einstein Manifolds. Classics in Mathematics. Springer, New York (2008). Reprint of the 1987 Edition zbMATHGoogle Scholar
  7. Bloch, A.M., Crouch, P.E.: Optimal control and geodesic flows. Syst. Control Lett. 28, 65–72 (1996) MathSciNetCrossRefzbMATHGoogle Scholar
  8. Bruveris, M., Gay-Balmaz, F., Holm, D.D., Ratiu, T.S.: The momentum map representation of images. J. Nonlinear Sci. 21(1), 115–150 (2011) MathSciNetCrossRefzbMATHGoogle Scholar
  9. Camarinha, M., Silva Leite, F., Crouch, P.E.: Splines of class C k on non-Euclidean spaces. IMA J. Math. Control Inf. 12, 399–410 (1995) MathSciNetCrossRefzbMATHGoogle Scholar
  10. Camarinha, M., Silva Leite, F., Crouch, P.E.: On the geometry of Riemannian cubic polynomials. Differ. Geom. Appl. 15(2), 107–135 (2001) MathSciNetCrossRefzbMATHGoogle Scholar
  11. Camassa, R., Holm, D.D.: An integrable shallow water equation with peaked solitons. Phys. Rev. Lett. 71, 1661–1664 (1993) MathSciNetCrossRefzbMATHGoogle Scholar
  12. Cendra, H., Marsden, J.E., Ratiu, T.S.: Lagrangian reduction by stages. Mem. Am. Math. Soc. 152(722), 1–117 (2001) MathSciNetGoogle Scholar
  13. Cotter, C.J., Holm, D.D.: Geodesic boundary value problems with symmetry. J. Geom. Mech. 2(1), 417–444 (2010) MathSciNetGoogle Scholar
  14. Crouch, P.E., Silva Leite, F.: The dynamic interpolation problem: on Riemannian manifolds, Lie groups, and symmetric spaces. J. Dyn. Control Syst. 1(2), 177–202 (1995) MathSciNetCrossRefzbMATHGoogle Scholar
  15. Crouch, P.E., Camarinha, M., Silva Leite, F.: A second order Riemannian variational problem from a Hamiltonian perspective. In: Pré-publicações do Departamento de Matemática da Universidade de Coimbra, pp. 98–117 (1998) Google Scholar
  16. Dupuis, P., Grenander, U., Miller, M.I.: Variational problems on flows of diffeomorphisms for image matching. Q. Appl. Math. 56, 587–600 (1998) MathSciNetzbMATHGoogle Scholar
  17. Durrleman, S., Pennec, X., Trouvé, A., Gerig, G., Ayache, N.: Spatiotemporal Atlas Estimation for Developmental Delay Detection in Longitudinal Datasets. Lecture Notes in Computer Science, vol. 5761, pp. 297–304. Springer, Berlin (2009) Google Scholar
  18. Gabriel, S., Kajiya, J.: Spline interpolation in curved space. State of the art in image synthesis. In: SIGGRAPH 1985 Course Notes. ACM Press, New York (1985) Google Scholar
  19. Gay-Balmaz, F., Ratiu, T.S.: Clebsch optimal control formulation in mechanics. J. Geom. Mech. 3(1), 41–79 (2011) MathSciNetzbMATHGoogle Scholar
  20. Gay-Balmaz, F., Holm, D.D., Meier, D.M., Ratiu, T.S., Vialard, F.-X.: Invariant higher-order variational problems. Commun. Math. Phys. (2010a). doi: 10.1007/s00220-011-1313-y Google Scholar
  21. Gay-Balmaz, F., Holm, D.D., Ratiu, T.S.: Geometric dynamics of optimization. Commun. Math. Sci. (2010b, accepted). Preprint available at arXiv:0912.2989
  22. Gay-Balmaz, F., Holm, D.D., Ratiu, T.S.: Higher order Lagrange–Poincaré and Hamilton–Poincaré reductions. Bull. Braz. Math. Soc. 42(4), 579–606 (2011) MathSciNetCrossRefzbMATHGoogle Scholar
  23. Giambò, R., Giannoni, F., Piccione, P.: An analytical theory for Riemannian cubic polynomials. IMA J. Math. Control Inf. 19, 445–460 (2002) CrossRefzbMATHGoogle Scholar
  24. Grenander, U.: General Pattern Theory. Oxford University Press, London (1993) Google Scholar
  25. Grenander, U., Miller, M.I.: Computational anatomy: an emerging discipline. Q. Appl. Math. 56, 617–694 (1998) MathSciNetzbMATHGoogle Scholar
  26. Hofer, M., Pottmann, H.: Energy-minimizing splines in manifolds. In: ACM SIGGRAPH 2004 Papers, pp. 284–293. ACM, New York (2004) CrossRefGoogle Scholar
  27. Holm, D.D., Marsden, J.E.: Momentum maps and measure-valued solutions (peakons, filaments and sheets) for the EPDiff equation. Prog. Math. 232, 203–235 (2004). In The Breadth of Symplectic and Poisson Geometry, a Festschrift for Alan Weinstein MathSciNetCrossRefGoogle Scholar
  28. Holm, D.D., Marsden, J.E., Ratiu, T.S.: The Euler–Poincaré equations and semidirect products with applications to continuum theories. Adv. Math. 137(1), 1–81 (1998) MathSciNetCrossRefzbMATHGoogle Scholar
  29. Holm, D.D., Ratnanather, J.T., Trouvé, A., Younes, L.: Soliton dynamics in computational anatomy. NeuroImage 23(Suppl. 1), 170–178 (2004) CrossRefGoogle Scholar
  30. Hussein, I.H., Bloch, A.M.: Dynamic interpolation on Riemannian manifolds: an application to interferometric imaging. In: Proceedings of the 2004 American Control Conference, vol. 1, pp. 685–690 (2004a) Google Scholar
  31. Hussein, I.H., Bloch, A.M.: Optimal control on Riemannian manifolds with potential fields. In: 43rd IEEE Conference on Decision and Control, Paradise Island, Bahamas (2004b) Google Scholar
  32. Krakowski, K.A.: Geometrical methods of inference. Ph.D. thesis, University of Western Australia (2002) Google Scholar
  33. Krakowski, K.A.: Envelopes of splines in the projective plane. IMA J. Math. Control Inf. 22, 171–180 (2005) MathSciNetCrossRefzbMATHGoogle Scholar
  34. Kriegl, A., Michor, P.W.: The Convenient Setting of Global Analysis. Surveys and Monographs, vol. 53. American Mathematical Society, Providence (1997) zbMATHGoogle Scholar
  35. Lee, J.M.: Riemannian Manifolds: An Introduction to Curvature. Graduate Texts in Mathematics. Springer, Berlin (1997) zbMATHGoogle Scholar
  36. Machado, L., Silva Leite, F.: Fitting smooth paths on Riemannian manifolds. In: Pré-publicações do Departamento de Matemática da Universidade de Coimbra, pp. 4–31 (2004) Google Scholar
  37. Machado, L., Silva Leite, F., Krakowski, K.A.: Higher-order smoothing splines versus least squares problems on Riemannian manifolds. J. Dyn. Control Syst. 16, 121–148 (2010) MathSciNetCrossRefzbMATHGoogle Scholar
  38. Marsden, J.E., Ratiu, T.S.: Introduction to Mechanics and Symmetry, 2nd edn. Texts in Applied Mathematics, vol. 17. Springer, New York (2003) Google Scholar
  39. Michor, P.W.: Topics in Differential Geometry. Graduate Studies in Mathematics, vol. 93. American Mathematical Society, Providence (2008) zbMATHGoogle Scholar
  40. Miller, M.I., Trouvé, A., Younes, L.: Geodesic shooting for computational anatomy. J. Math. Imaging Vis. 24(2), 209–228 (2006) CrossRefGoogle Scholar
  41. Nishimori, Y., Akaho, S.: Learning algorithms utilizing quasi-geodesic flows on the Stiefel manifold. Neurocomputing 67, 106–135 (2005) CrossRefGoogle Scholar
  42. Noakes, L.: Interpolating Camera Configurations. Lecture Notes in Computer Science, vol. 2756, pp. 714–721. Springer, Berlin (2003a) Google Scholar
  43. Noakes, L.: Null cubics and Lie quadratics. J. Math. Phys. 44, 1436–1448 (2003b) MathSciNetCrossRefzbMATHGoogle Scholar
  44. Noakes, L.: Non-null Lie quadratics in E3. J. Math. Phys. 45, 4334–4351 (2004) MathSciNetCrossRefzbMATHGoogle Scholar
  45. Noakes, L.: Duality and Riemannian cubics. Adv. Comput. Math. 25, 195–209 (2006a) MathSciNetCrossRefzbMATHGoogle Scholar
  46. Noakes, L.: Spherical splines. In: Geometric Properties for Incomplete Data, vol. 1, pp. 77–101 (2006b) CrossRefGoogle Scholar
  47. Noakes, L., Popiel, T.: Null Riemannian cubics in tension in SO(3). IMA J. Math. Control Inf. 22, 477–488 (2005) MathSciNetCrossRefzbMATHGoogle Scholar
  48. Noakes, L., Heinzinger, G., Paden, B.: Cubic splines on curved spaces. IMA J. Math. Control Inf. 6, 465–473 (1989) MathSciNetCrossRefzbMATHGoogle Scholar
  49. O’Neill, B.: The fundamental equations of a submersion. Mich. Math. J. 13, 459–469 (1966) MathSciNetCrossRefzbMATHGoogle Scholar
  50. O’Neill, B.: Semi-Riemannian Geometry. With Applications to Relativity. Pure and Applied Mathematics. Academic Press, New York (1995) Google Scholar
  51. Ortega, J.-P., Ratiu, T.S.: Momentum Maps and Hamiltonian Reduction. Progress in Mathematics, vol. 222. Birkhäuser, Boston (2004) zbMATHGoogle Scholar
  52. Park, F.C., Ravani, B.: Smooth invariant interpolation of rotations. ACM Trans. Graph. 16, 277–295 (1997) CrossRefGoogle Scholar
  53. Popiel, T.: Higher order geodesics in Lie groups. Math. Control Signals Syst. 19, 235–253 (2007) MathSciNetCrossRefzbMATHGoogle Scholar
  54. Thompson, D’A.W.: On Growth and Form. Cambridge University Press, Cambridge (1942) zbMATHGoogle Scholar
  55. Trouvé, A.: Diffeomorphisms groups and pattern matching in image analysis. Int. J. Comput. Vis. 28, 213–221 (1998) CrossRefGoogle Scholar
  56. Vialard, F.-X.: Hamiltonian approach to shape spaces in a diffeomorphic framework: from the discontinuous image matching problem to a stochastic growth model. PhD thesis, Ecole Normale Supérieure de Cachan (2009). http://tel.archives-ouvertes.fr/tel-00400379/fr/
  57. Vialard, F.-X., Trouvé, A.: Shape splines and stochastic shape evolutions: a second order point of view. Quart. Appl. Math. 70, 219–251 (2012). doi: 10.1090/S0033-569X-2012-01250-4 CrossRefzbMATHGoogle Scholar
  58. Younes, L.: Shapes and Diffeomorphisms. Applied Mathematical Sciences. Springer, Berlin (2010) CrossRefzbMATHGoogle Scholar
  59. Younes, L., Arrate, F., Miller, M.I.: Evolutions equations in computational anatomy. NeuroImage 45(1), 40–50 (2009) CrossRefGoogle Scholar
  60. Zefran, M., Kumar, V., Croke, C.B.: On the generation of smooth three-dimensional rigid body motions. IEEE Trans. Robot. Autom. 14(4), 576–589 (1998) CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2012

Authors and Affiliations

  • François Gay-Balmaz
    • 1
  • Darryl D. Holm
    • 2
    Email author
  • David M. Meier
    • 2
  • Tudor S. Ratiu
    • 3
  • François-Xavier Vialard
    • 4
  1. 1.Laboratoire de Météorologie DynamiqueÉcole Normale Supérieure/CNRSParisFrance
  2. 2.Department of MathematicsImperial CollegeLondonUK
  3. 3.Section de Mathématiques and Bernoulli CenterÉcole Polytechnique Fédérale de LausanneLausanneSwitzerland
  4. 4.Centre de Recherche en Mathématiques de la DécisionUniversité Paris-DauphineParisFrance

Personalised recommendations