Journal of Nonlinear Science

, Volume 22, Issue 5, pp 689–725 | Cite as

The Geometry of Spontaneous Spiking in Neuronal Networks

Article

Abstract

The mathematical theory of pattern formation in electrically coupled networks of excitable neurons forced by small noise is presented in this work. Using the Freidlin–Wentzell large-deviation theory for randomly perturbed dynamical systems and the elements of the algebraic graph theory, we identify and analyze the main regimes in the network dynamics in terms of the key control parameters: excitability, coupling strength, and network topology. The analysis reveals the geometry of spontaneous dynamics in electrically coupled network. Specifically, we show that the location of the minima of a certain continuous function on the surface of the unit n-cube encodes the most likely activity patterns generated by the network. By studying how the minima of this function evolve under the variation of the coupling strength, we describe the principal transformations in the network dynamics. The minimization problem is also used for the quantitative description of the main dynamical regimes and transitions between them. In particular, for the weak and strong coupling regimes, we present asymptotic formulas for the network activity rate as a function of the coupling strength and the degree of the network. The variational analysis is complemented by the stability analysis of the synchronous state in the strong coupling regime. The stability estimates reveal the contribution of the network connectivity and the properties of the cycle subspace associated with the graph of the network to its synchronization properties. This work is motivated by the experimental and modeling studies of the ensemble of neurons in the Locus Coeruleus, a nucleus in the brainstem involved in the regulation of cognitive performance and behavior.

Keywords

Pattern formation Neuronal network Excitable system Noise Network topology Synchronization 

Mathematics Subject Classification

34F05 34F10 92C20 

References

  1. Alvarez, V., Chow, C., Van Bockstaele, E.J., Williams, J.T.: Frequency-dependent synchrony in locus coeruleus: role of electronic coupling. Proc. Natl. Acad. Sci. USA 99, 4032–4036 (2002) CrossRefGoogle Scholar
  2. Aston-Jones, G., Cohen, J.D.: An integrative theory of locus coeruleus-norepinephrine function: adaptive gain and optimal performance. Annu. Rev. Neurosci. 28, 403–450 (2005) CrossRefGoogle Scholar
  3. Berglund, N., Gentz, B.: Noise-Induced Phenomena in Slow–Fast Dynamical Systems: A Sample-Paths Approach. Springer, Berlin (2006) MATHGoogle Scholar
  4. Berridge, C.W., Waterhouse, B.D.: The locus coeruleus-noradrenergic system: modulation of behavioral state and state-dependent cognitive processes. Brains Res. Rev. 42, 33–84 (2003) CrossRefGoogle Scholar
  5. Biggs, N.: Algebraic Graph Theory, 2nd edn. Cambridge University Press, Cambridge (1993) Google Scholar
  6. Bollobas, B.: Modern Graph Theory. Graduate Texts in Mathematics, vol. 184. Springer, New York (1998) MATHCrossRefGoogle Scholar
  7. Brown, E., Moehlis, J., Holmes, P., Clayton, E., Rajkowski, J., Aston-Jones, G.: The influence of spike rate and stimulus duration on noradrenergic neurons. J. Comput. Neurosci. 17, 13–29 (2004) CrossRefGoogle Scholar
  8. Chow, S.-N., Hale, J.K.: Methods of Bifurcation Theory. Springer, New York (1982) MATHCrossRefGoogle Scholar
  9. Chung, F.R.K.: Spectral Graph Theory. CBMS Regional Conference Series in Mathematics, vol. 92 (1997) MATHGoogle Scholar
  10. Connors, B.W., Long, M.A.: Electrical synapses in the mammalian brain. Annu. Rev. Neurosci. 27, 393–418 (2004) CrossRefGoogle Scholar
  11. Coombes, S.: Neuronal networks with gap junctions: A study of piece-wise linear planar neuron models. SIAM J. Appl. Dyn. Syst. 7, 1101–1129 (2008) MathSciNetMATHCrossRefGoogle Scholar
  12. Day, M.V.: On the exponential exit law in the small parameter exit problem. Stochastics 8, 297–323 (1983) MathSciNetMATHCrossRefGoogle Scholar
  13. Fiedler, M.: Algebraic connectivity of graphs. Czechoslov. Math. J. 23, 98 (1973) MathSciNetGoogle Scholar
  14. Freidlin, M.I., Wentzell, A.D.: Random Perturbations of Dynamical Systems, 2nd edn. Springer, New York (1998) MATHCrossRefGoogle Scholar
  15. Friedman, J.: A Proof of Alon’s Second Eigenvalue Conjecture and Related Problems. Memoirs of the American Mathematical Society, vol. 195 (2008) Google Scholar
  16. Gao, J., Holmes, P.: On the dynamics of electrically-coupled neurons with inhibitory synapses. J. Comput. Neurosci. 22, 39–61 (2007) MathSciNetCrossRefGoogle Scholar
  17. Guckenheimer, J., Holmes, P.: Nonlinear Oscillations, Dynamical Systems, and Bifurcations of Vector Fields. Springer, Berlin (1983) MATHGoogle Scholar
  18. Hoory, S., Linial, N., Wigderson, A.: Expander graphs and their applications. Bull. Am. Math. Soc. 43(4), 439–561 (2006) MathSciNetMATHCrossRefGoogle Scholar
  19. Horn, R.A., Johnson, C.R.: Matrix Analysis. Cambridge University Press, Cambridge (1999) Google Scholar
  20. Jost, J.: Dynamical networks. In: Feng, J., Jost, J., Qian, M. (eds.) Networks: From Biology to Theory. Springer, Berlin (2007) Google Scholar
  21. Karatzas, I., Shreve, S.E.: Brownian Motion and Stochastic Calculus, 2nd edn. Springer, New York (1991) MATHCrossRefGoogle Scholar
  22. Keener, J.P.: Propagation and its failure in coupled systems of discrete excitable cells. SIAM J. Appl. Math. 47(3), 556–572 (1987) MathSciNetMATHCrossRefGoogle Scholar
  23. Kuznetsov, Y.A.: Elements of Applied Bifurcation Theory. Springer, Berlin (1998) MATHGoogle Scholar
  24. Lewis, T., Rinzel, J.: Dynamics of spiking neurons connected by both inhibitory and electrical coupling. J. Comput. Neurosci. 14, 283–309 (2003) CrossRefGoogle Scholar
  25. Lubotzky, A., Phillips, R., Sarnak, P.: Ramanujan graphs. Combinatorica 8, 161–278 (1988) MathSciNetCrossRefGoogle Scholar
  26. Margulis, G.: Explicit group-theoretic constructions of combinatorial schemes and their applications in the construction of expanders and concentrators. Probl. Pereda. Inf. 24(1), 51–60 (1988) (Russian). (English translation in Probl. Inf. Transm. 24(1), 39–46 (1988)) MathSciNetGoogle Scholar
  27. Medvedev, G.S.: Electrical coupling promotes fidelity of responses in the networks of model neurons. Neural Comput. 21(11), 3057–3078 (2009) MathSciNetMATHCrossRefGoogle Scholar
  28. Medvedev, G.S.: Synchronization of coupled stochastic limit cycle oscillators. Phys. Lett. A 374, 1712–1720 (2010) MATHCrossRefGoogle Scholar
  29. Medvedev, G.S.: Synchronization of coupled limit cycles. J. Nonlinear Sci. 21, 441–464 (2011a) MathSciNetMATHCrossRefGoogle Scholar
  30. Medvedev, G.S.: Stochastic stability of continuous time consensus protocols (2011b, submitted). arXiv:1007.1234
  31. Medvedev, G.S., Kopell, N.: Synchronization and transient dynamics in the chains of electrically coupled FitzHugh-Nagumo oscillators. SIAM J. Appl. Math. 61, 1762–1801 (2001) MathSciNetMATHCrossRefGoogle Scholar
  32. Medvedev, G.S., Zhuravytska, S.: Shaping bursting by electrical coupling and noise. Biol. Cybern. (2012, in press). doi:10.1007/s00422-012-0481-y
  33. Rinzel, J., Ermentrout, G.B.: Analysis of neural excitability and oscillations. In: Koch, C., Segev, I. (eds.) Methods in Neuronal Modeling. MIT Press, Cambridge (1989) Google Scholar
  34. Sara, S.J.: The locus coeruleus and noradrenergic modulation of cognition. Nat. Rev., Neurosci. 10, 211–223 (2009) CrossRefGoogle Scholar
  35. Sarnak, P.: What is an expander? Not. Am. Math. Soc. 51, 762–763 (2004) MathSciNetMATHGoogle Scholar
  36. Usher, M., Cohen, J.D., Servan-Schreiber, D., Rajkowski, J., Aston-Jones, G.: The role of locus coeruleus in the regulation of cognitive performance. Science 283, 549–554 (1999) CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2012

Authors and Affiliations

  1. 1.Department of MathematicsDrexel UniversityPhiladelphiaUSA
  2. 2.Bank of AmericaWilmingtonUSA

Personalised recommendations