Journal of Nonlinear Science

, Volume 22, Issue 3, pp 277–325 | Cite as

Bifurcation Diagrams and Heteroclinic Networks of Octagonal H-Planforms

Article

Abstract

This paper completes the classification of bifurcation diagrams for H-planforms in the Poincaré disc \(\mathcal {D}\) whose fundamental domain is a regular octagon. An H-planform is a steady solution of a PDE or integro-differential equation in \(\mathcal {D}\), which is invariant under the action of a lattice subgroup Γ of U(1,1), the group of isometries of \({\mathcal{D}}\). In our case Γ generates a tiling of \(\mathcal {D}\) with regular octagons. This problem was introduced as an example of spontaneous pattern formation in a model of image feature detection by the visual cortex where the features are assumed to be represented in the space of structure tensors. Under ‘generic’ assumptions the bifurcation problem reduces to an ODE which is invariant by an irreducible representation of the group of automorphisms \(\mathcal {G}\) of the compact Riemann surface \(\mathcal {D}/\varGamma \). The irreducible representations of \(\mathcal {G}\) have dimensions one, two, three and four. The bifurcation diagrams for the representations of dimensions less than four have already been described and correspond to well-known group actions. In the present work we compute the bifurcation diagrams for the remaining three irreducible representations of dimension four, thus completing the classification. In one of these cases, there is generic bifurcation of a heteroclinic network connecting equilibria with two different orbit types.

Keywords

Equivariant bifurcation analysis Neural fields Poincaré disc Heteroclinic network 

Mathematics Subject Classification (2000)

37C80 37C29 58K05 58K70 92B20 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Aguiar, M.A.D., Castro, S.B.S.D., Labouriau, I.S.: Dynamics near a heteroclinic network. Nonlinearity 18 (2005) Google Scholar
  2. Armbruster, D., Guckenheimer, J., Holmes, P.: Heteroclinic cycles and modulated waves in systems with O(2) symmetry. Physica D 29, 257–282 (1988) MathSciNetMATHCrossRefGoogle Scholar
  3. Ashwin, P., Field, M.: Heteroclinic networks in coupled cell systems. Arch. Ration. Mech. Anal. 148(2), 107–143 (1999) MathSciNetMATHCrossRefGoogle Scholar
  4. Aurich, R., Steiner, F.: Periodic-orbit sum rules for the Hadamard-Gutzwiller model. Physica D 39, 169–193 (1989) MathSciNetMATHCrossRefGoogle Scholar
  5. Balazs, N.L., Voros, A.: Chaos on the pseudosphere. Phys. Rep. 143(3), 109–240 (1986) MathSciNetCrossRefGoogle Scholar
  6. Bigun, J., Granlund, G.: Optimal orientation detection of linear symmetry. In: Proc. First Int’l Conf. Comput. Vision, pp. 433–438. EEE Computer Society, Los Alamitos (1987) Google Scholar
  7. Bressloff, P.C., Cowan, J.D., Golubitsky, M., Thomas, P.J., Wiener, M.C.: Geometric visual hallucinations, Euclidean symmetry and the functional architecture of striate cortex. Philos. Trans. R. Soc. Lond. B 306(1407), 299–330 (2001) CrossRefGoogle Scholar
  8. Chossat, P., Faugeras, O.: Hyperbolic planforms in relation to visual edges and textures perception. PLoS Comput. Biol. 5(12), e1000625 (2009) MathSciNetCrossRefGoogle Scholar
  9. Chossat, P., Lauterbach, R.: Methods in Equivariant Bifurcations and Dynamical Systems. World Scientific, Singapore (2000) MATHGoogle Scholar
  10. Chossat, P., Lauterbach, R., Melbourne, I.: Steady-state bifurcation with 0 (3)-symmetry. Arch. Ration. Mech. Anal. 113(4), 313–376 (1990) MathSciNetCrossRefGoogle Scholar
  11. Chossat, P., Faye, G., Faugeras, O.: Bifurcation of hyperbolic planforms. J. Nonlinear Sci. (2011) Google Scholar
  12. Ciarlet, P.G., Lions, J.L. (eds.): Handbook of Numerical Analysis. Volume II. Finite Element Methods (Part 1). North-Holland, Amsterdam (1991) MATHGoogle Scholar
  13. Conway, J.H., Smith, D.A.: On Quaternions and Octonions, Their Geometry, Arithmetic, and Symmetry. AK Peters, Wellesley (2003) MATHGoogle Scholar
  14. Fässler, A., Stiefel, E.L.: Group Theoretical Methods and Their Applications. Birkhäuser, Basel (1992) MATHCrossRefGoogle Scholar
  15. Faye, G., Chossat, P., Faugeras, O.: Analysis of a hyperbolic geometric model for visual texture perception. J. Math. Neurosci. 1(4) (2011) Google Scholar
  16. Field, M.: Equivariant bifurcation theory and symmetry breaking. J. Dyn. Differ. Equ. 1(4), 369–421 (1989) MathSciNetMATHCrossRefGoogle Scholar
  17. Field, M., Swift, J.: Stationary bifurcation to limit cycles and heteroclinic cycles. Nonlinearity 4, 1001–1043 (1991) MathSciNetMATHCrossRefGoogle Scholar
  18. Goldberg, J.A., Rokni, U., Sompolinsky, H.: Patterns of ongoing activity and the functional architecture of the primary visual cortex. Neuron 42, 489–500 (2004) CrossRefGoogle Scholar
  19. Golubitsky, M., Stewart, I., Schaeffer, D.G.: Singularities and Groups in Bifurcation Theory. Vol. II. Springer, Berlin (1988) MATHCrossRefGoogle Scholar
  20. Guckenheimer, J., Holmes, P.: Structurally stable heteroclinic cycles. Math. Proc. Camb. Philol. Soc. 103, 189–192 (1988) MathSciNetMATHCrossRefGoogle Scholar
  21. Guillemin, V., Pollack, A.: Differential Topology. Chelsea, New York (2010) MATHGoogle Scholar
  22. Haragus, M., Iooss, G.: Local Bifurcations, Center Manifolds, and Normal Forms in Infinite Dimensional Systems. EDP Sci. Springer Verlag UTX Series. Springer, Berlin (2010) Google Scholar
  23. Helgason, S.: Groups and Geometric Analysis. Mathematical Surveys and Monographs, vol. 83. American Mathematical Society, Providence (2000) MATHGoogle Scholar
  24. Hoyle, R.B.: Pattern Formation: An Introduction to Methods. Cambridge University Press, Cambridge (2006) MATHCrossRefGoogle Scholar
  25. Katok, S.: Fuchsian Groups. Chicago Lectures in Mathematics. University of Chicago Press, Chicago (1992) MATHGoogle Scholar
  26. Kenet, T., Bibitchkov, D., Tsodyks, M., Grinvald, A., Arieli, A.: Spontaneously emerging cortical representations of visual attributes. Nature 425(6961), 954–956 (2003) CrossRefGoogle Scholar
  27. Kirk, V., Silber, M.: A competition between heteroclinic cycles. Nonlinearity 7, 1605 (1994) MathSciNetMATHCrossRefGoogle Scholar
  28. Knutsson, H.: Representing local structure using tensors. In: Scandinavian Conference on Image Analysis, pp. 244–251 (1989) Google Scholar
  29. Krupa, M., Melbourne, I.: Nonasymptotically stable attractors in O(2) mode interactions. In: Normal Forms and Homoclinic Chaos, Waterloo, ON, 1992, vol. 4, pp. 219–232 (1992) Google Scholar
  30. Krupa, M., Melbourne, I.: Asymptotic stability of heteroclinic cycles in systems with symmetry. Ergod. Theory Dyn. Syst. 15(01), 121–147 (1995) MathSciNetMATHCrossRefGoogle Scholar
  31. Krupa, M., Melbourne, I.: Asymptotic stability of heteroclinic cycles in systems with symmetry. ii. Proc. R. Soc. Edinb., Sect. A, Math. 134(06), 1177–1197 (2004) MathSciNetMATHCrossRefGoogle Scholar
  32. Lauterbach, R., Matthews, P.: Do absolutely irreducible group actions have odd dimensional fixed point spaces? arXiv:1011.3986 (2010)
  33. Miller, W.: Symmetry Groups and Their Applications, vol. 50. Academic Press, San Diego (1972) MATHGoogle Scholar
  34. Rabinovich, M.I., Huerta, R., Varona, P., Afraimovich, V.S.: Transient cognitive dynamics, metastability, and decision making. PLoS Comput. Biol. e1000072 (2008) Google Scholar
  35. Rabinovich, M.I., Muezzinoglu, M.K., Strigo, I., Bystritsky, A.: Dynamical principles of emotion-cognition interaction: mathematical images of mental disorders. PloS One e12547 (2010) Google Scholar
  36. Ringach, D.L.: Neuroscience: states of mind. Nature 425 (2003) Google Scholar
  37. Schmit, C.: Quantum and classical properties of some billiards on the hyperbolic plane. Chaos Quantum Phys. 335–369 (1991) Google Scholar
  38. Veltz, R., Faugeras, O.: Local/global analysis of the stationary solutions of some neural field equations. SIAM J. Appl. Dyn. Syst. (2010) Google Scholar
  39. Wilson, H.R., Cowan, J.D.: Excitatory and inhibitory interactions in localized populations of model neurons. Biophys. J. 12, 1–24 (1972) CrossRefGoogle Scholar
  40. Wilson, H.R., Cowan, J.D.: A mathematical theory of the functional dynamics of cortical and thalamic nervous tissue. Biol. Cybern. 13(2), 55–80 (1973) MATHCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2012

Authors and Affiliations

  1. 1.NeuroMathComp LaboratoryINRIAParisFrance
  2. 2.J-A Dieudonné LaboratoryCNRS and University of Nice Sophia-AntipolisNice Cedex 02France

Personalised recommendations