Journal of Nonlinear Science

, Volume 21, Issue 6, pp 897–920 | Cite as

Approximations to the Stochastic Burgers Equation

  • Martin Hairer
  • Jochen Voss


This article is devoted to the numerical study of various finite-difference approximations to the stochastic Burgers equation. Of particular interest in the one-dimensional case is the situation where the driving noise is white both in space and in time. We demonstrate that in this case, different finite-difference schemes converge to different limiting processes as the mesh size tends to zero. A theoretical explanation of this phenomenon is given and we formulate a number of conjectures for more general classes of equations, supported by numerical evidence.


Stochastic Burgers equation Correction term Numerical approximation 

Mathematics Subject Classification (2000)

60H35 60H15 35K55 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Alabert, A., Gyöngy, I.: On numerical approximation of stochastic Burgers’ equation. In: From Stochastic Calculus to Mathematical Finance, pp. 1–15. Springer, Berlin (2006) CrossRefGoogle Scholar
  2. Balazs, M., Quastel, J., Seppalainen, T.: Scaling exponent for the Hopf-Cole solution of KPZ/Stochastic Burgers (2009). Preprint arXiv:0909.4816v1
  3. Barabási, A.-L.: Roughening of growing surfaces: Kinetic models and continuum theories. Comput. Mater. Sci., 6(2), 127–134 (1996). doi: 10.1016/0927-0256(96)00026-2. Proceedings of the Workshop on Virtual Molecular Beam Epitaxy CrossRefGoogle Scholar
  4. Bertini, L., Giacomin, G.: Stochastic Burgers and KPZ equations from particle systems. Commun. Math. Phys. 183(3), 571–607 (1997). doi: 10.1007/s002200050044 MathSciNetMATHCrossRefGoogle Scholar
  5. Bertini, L., Cancrini, N., Jona-Lasinio, G.: The stochastic Burgers equation. Commun. Math. Phys. 165(2), 211–232 (1994) MathSciNetMATHCrossRefGoogle Scholar
  6. Blatter, G., Feigel’man, M.V., Geshkenbein, V.B., Larkin, A.I., Vinokur, V.M.: Vortices in high-temperature superconductors. Rev. Mod. Phys. 66(4), 1125–1388 (1994) doi: 10.1103/RevModPhys.66.1125 CrossRefGoogle Scholar
  7. Bouchaud, J.-P., Mézard, M.: Velocity fluctuations in forced Burgers turbulence. Phys. Rev. E 54(5), 5116–5121 (1996). doi: 10.1103/PhysRevE.54.5116 CrossRefGoogle Scholar
  8. Brzeźniak, Z., Capiński, M., Flandoli, F.: Stochastic partial differential equations and turbulence. Math. Models Methods Appl. Sci. 1(1), 41–59 (1991). doi: 10.1142/S0218202591000046 MathSciNetMATHCrossRefGoogle Scholar
  9. Courant, R., Isaacson, E., Rees, M.: On the solution of nonlinear hyperbolic differential equations by finite differences. Commun. Pure Appl. Math. 5, 243–255 (1952) MathSciNetMATHCrossRefGoogle Scholar
  10. Da Prato, G., Zabczyk, J.: Stochastic Equations in Infinite Dimensions. Encyclopedia of Mathematics and Its Applications, vol. 44. Cambridge University Press, Cambridge (1992). ISBN: 0-521-38529-6 MATHCrossRefGoogle Scholar
  11. Da Prato, G., Debussche, A., Temam, R.: Stochastic Burgers’ equation. Nonlinear Differ. Equ. Appl. 1(4), 389–402 (1994). doi: 10.1007/BF01194987 MATHCrossRefGoogle Scholar
  12. E, W., Vanden Eijnden, E.: Another note on forced Burgers turbulence. Phys. Fluids 12(1), 149–154 (2000a) MathSciNetMATHCrossRefGoogle Scholar
  13. E, W., Vanden Eijnden, E.: Statistical theory for the stochastic Burgers equation in the inviscid limit. Commun. Pure Appl. Math. 53(7), 852–901 (2000b) MathSciNetMATHCrossRefGoogle Scholar
  14. E, W., Khanin, K., Mazel, A., Sinai, Y.: Invariant measures for Burgers equation with stochastic forcing. Ann. Math. (2) 151(3), 877–960 (2000) MathSciNetMATHCrossRefGoogle Scholar
  15. Goldys, B., Maslowski, B.: Exponential ergodicity for stochastic Burgers and 2D Navier-Stokes equations. J. Funct. Anal. 226(1), 230–255 (2005) MathSciNetMATHCrossRefGoogle Scholar
  16. Gugg, C., Duan, J.: A Markov jump process approximation of the stochastic Burgers equation. Stoch. Dyn. 4(2), 245–264 (2004) MathSciNetMATHCrossRefGoogle Scholar
  17. Gugg, C., Kielhöfer, H., Niggemann, M.: On the approximation of the stochastic Burgers equation. Commun. Math. Phys. 230(1), 181–199 (2002) MATHCrossRefGoogle Scholar
  18. Gurbatov, S.N., Saichev, A.I., Shandarin, S.F.: A model description of the development of the large-scale structure of the Universe. Dokl. Akad. Nauk SSSR 285(2), 323–326 (1985) MathSciNetGoogle Scholar
  19. Gyöngy, I.: Existence and uniqueness results for semilinear stochastic partial differential equations. Stoch. Process. Appl. 73(2), 271–299 (1998) MATHCrossRefGoogle Scholar
  20. Gyöngy, I., Nualart, D.: On the stochastic Burgers’ equation in the real line. Ann. Probab. 27(2), 782–802 (1999) MathSciNetMATHCrossRefGoogle Scholar
  21. Hairer, M.: An Introduction to Stochastic PDEs. Lecture Notes (2009). arXiv:0907.4178v1
  22. Hairer, M., Stuart, A.M., Voss, J.: Analysis of SPDEs arising in path sampling, Part II: The nonlinear case. Ann. Appl. Probab. 17(5), 1657–1706 (2007). doi: 10.1214/07-AAP441 MathSciNetMATHCrossRefGoogle Scholar
  23. Kim, J.U.: On the stochastic Burgers equation with a polynomial nonlinearity in the real line. Discrete Contin. Dyn. Syst., Ser. A 6(4), 835–866 (2006) (electronic) MATHCrossRefGoogle Scholar
  24. Kraichnan, R.H.: Note on forced Burgers turbulence. Phys. Fluids 11(12), 3738–3742 (1999) MathSciNetMATHCrossRefGoogle Scholar
  25. Mattheij, R.M.M., Rienstra, S.W., ten Thije Boonkkamp, J.H.M.: Partial Differential Equations. SIAM Monographs on Mathematical Modeling and Computation. SIAM, New York (2005). ISBN: 0-89871-594-6 MATHCrossRefGoogle Scholar
  26. Nelder, J., Mead, R.: A simplex method for function minimization. Comput. J. 7, 308–313 (1965) MATHGoogle Scholar
  27. Shandarin, S.F., Zel’dovich, Y.B.: The large-scale structure of the universe: turbulence, intermittency, structures in a self-gravitating medium. Rev. Mod. Phys. 61(2), 185–220 (1989) MathSciNetCrossRefGoogle Scholar
  28. Twardowska, K., Zabczyk, J.: Qualitative properties of solutions to stochastic Burgers’ system of equations. In: Stochastic Partial Differential Equations and Applications—VII. Lect. Notes Pure Appl. Math., vol. 245, pp. 311–322. Chapman & Hall/CRC, Boca Raton (2006) CrossRefGoogle Scholar
  29. Yakhot, V., Chekhlov, A.: Algebraic tails of probability density functions in the random-force-driven burgers turbulence. Phys. Rev. Lett. 77(15), 3118–3121 (1996). doi: 10.1103/PhysRevLett.77.3118 CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2011

Authors and Affiliations

  1. 1.University of WarwickCoventryUK
  2. 2.University of LeedsLeedsUK

Personalised recommendations