Journal of Nonlinear Science

, Volume 21, Issue 3, pp 441–464 | Cite as

Synchronization of Coupled Limit Cycles

Article

Abstract

A unified approach to the analysis of synchronization in coupled systems of autonomous differential equations is presented in this work. Through a careful analysis of the variational equation of the coupled system we establish a sufficient condition for synchronization in terms of the geometric properties of the local limit cycles and the coupling operator. This result applies to a large class of differential equation models in physics and biology. The stability analysis is complemented by a discussion of numerical simulations of a compartmental model of a neuron.

Keywords

Synchronization Dissipative coupling Network Consensus protocol Compartmental model 

Mathematics Subject Classification (2000)

34D20 92C20 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Afraimovich, V.S., Verichev, N.N., Rabinovich, M.I.: Radiophys. Quantum Electron. 29, 795 (1986) MathSciNetCrossRefGoogle Scholar
  2. Afraimovich, V.S., Chow, S.-N., Hale, J.K.: Synchronization in lattices of coupled oscillators. Physica D 103, 442–451 (1997) MathSciNetMATHCrossRefGoogle Scholar
  3. Balerini, M., et al.: Interaction ruling animal collective behavior depends on topological rather than metric distance: evidence from a field study. Proc. Natl. Acad. Sci. USA 105(4), 1232–1237 (2008) CrossRefGoogle Scholar
  4. Belair, J., Holmes, P.J.: On linearly coupled relaxation oscillations. Q. Appl. Math. 42, 193–219 (1984) MathSciNetMATHGoogle Scholar
  5. Belykh, V.N., Belykh, I., Hasler, M.: Connection graph stability method for synchronized coupled chaotic systems. Physica D 195, 159–187 (2004) MathSciNetMATHCrossRefGoogle Scholar
  6. Belykh, I., Belykh, V., Hasler, M.: Generalized connection graph method for synchronization in asymmetrical networks. Physica D 224, 42–51 (2006) MathSciNetMATHCrossRefGoogle Scholar
  7. Blekhman, I.I.: Synchronization in Science and Technology. AMSE Press, New York (1988) Google Scholar
  8. Brown, R., Rulkov, N.F.: Synchronization of chaotic systems: transverse stability of trajectories in invariant manifolds. Chaos 7(3), 395–413 (1997a) MathSciNetMATHCrossRefGoogle Scholar
  9. Brown, R., Rulkov, N.F.: Designing coupling that guarantees synchronization between identical chaotic systems. Phys. Rev. Lett. 78, 4189–4192 (1997b) CrossRefGoogle Scholar
  10. Brown, E., Moehlis, J., Holmes, P.: On phase reduction and response dynamics of neural oscillator populations. Neural Comput. 16(4), 673–715 (2004) MATHCrossRefGoogle Scholar
  11. Chow, C.C., Kopell, N.: Dynamics of spiking neurons with electrical coupling. Neural Comput. 12, 1643–1678 (2000) CrossRefGoogle Scholar
  12. Coombes, S.: Neuronal networks with gap junctions: a study of piece-wise linear planar neuron models. SIAM J. Appl. Dyn. Syst. 7, 1101–1129 (2008) MathSciNetMATHCrossRefGoogle Scholar
  13. Dayan, P., Abbot, L.F.: Theoretical Neuroscience. MIT Press, New York (1999) Google Scholar
  14. Dorfler, F., Bullo, F.: Transient stability analysis in power networks and synchronization of non-uniform Kuramoto oscillators. In: American Control Conference, Baltimore, MD, June, pp. 930–937 (2010) Google Scholar
  15. Ermentrout, G.B., Kopell, N.: Multiple pulse interactions and averaging in systems of coupled neural oscillators. J. Math. Biol. 29, 195–217 (1991) MathSciNetMATHCrossRefGoogle Scholar
  16. Gao, J., Holmes, P.: On the dynamics of electrically-coupled neurons with inhibitory synapses. J. Comput. Neurosci. 22, 39–61 (2007) MathSciNetCrossRefGoogle Scholar
  17. Garcia-Rill, E., Heister, D.S., Ye, M., Charlesworth, A., Hayar, A.: Electrical coupling: novel mechanism for sleep–wake control. Sleep 30(11), 1405–1414 (2007) Google Scholar
  18. Gelfand, I.M.: Lectures on Lectures on Linear Algebra, 7th edn. Dobrosvet, Moscow (1998) (In Russian) Google Scholar
  19. Golubitsky, M., Stewart, I.: Nonlinear dynamics of networks: the groupoid formalism. Bull. Am. Math. Soc. 43, 305–364 (2006) MathSciNetMATHCrossRefGoogle Scholar
  20. Ghosh, A., Boyd, S., Saberi, A.: Minimizing effective resistance of a graph. SIAM Rev. 50(1), 37–66 (2008) MathSciNetMATHCrossRefGoogle Scholar
  21. Fujisaka, H., Yamada, T.: Prog. Theor. Phys. 69, 32 (1983) MathSciNetMATHCrossRefGoogle Scholar
  22. Hale, J.K.: Ordinary Differential Equations, 2nd edn. (1980) Krieger MATHGoogle Scholar
  23. Hale, J.K.: Asymptotic Behavior of Dissipative Systems. Mathematical Surveys and Monographs, vol. 25. AMS, Providence (1988) MATHGoogle Scholar
  24. Hale, J.K.: Diffusive coupling, dissipation, and synchronization. J. Dyn. Differ. Equ. 9(1), 1–51 (1997) MathSciNetMATHCrossRefGoogle Scholar
  25. Harville, D.A.: Matrix Algebra from a Statistician’s Prospective. Springer, Berlin (2000). Corrected third printing Google Scholar
  26. Hoppensteadt, F.C., Izhikevich, E.M.: Weakly Connected Neural Networks. Springer, Berlin (1997) CrossRefGoogle Scholar
  27. Izhikevich, E.M.: Dynamical Systems in Neuroscience: The Geometry of Excitability and Bursting. MIT Press, Cambridge (2007) Google Scholar
  28. Josic, K.: Synchronization of chaotic systems and invariant manifolds. Nonlinearity 13, 1321 (2000) MathSciNetMATHCrossRefGoogle Scholar
  29. Kopell, N., Ermentrout, G.B.: Math. Biosci. 90, 87 (1988) MathSciNetMATHCrossRefGoogle Scholar
  30. Kuramoto, Y.: In: Araki, H. (ed.) Lecture Notes in Physics, vol. 39, pp. 420–422. Springer, Berlin (1975) Google Scholar
  31. Levy, R., Hutchison, W.D., Lozano, A.M., Dostrovsky, J.O.: High-frequency synchronization of neuronal activity in the subthalamic nucleus of Parkinsonian patients with limb tremor. J. Neurosci. 20(20), 7766–7775 (2000) Google Scholar
  32. Lewis, T., Rinzel, J.: Dynamics of spiking neurons connected by both inhibitory and electrical coupling. J. Comput. Neurosci. 14, 283–309 (2003) CrossRefGoogle Scholar
  33. Medvedev, G.S.: Electrical coupling promotes fidelity of responses in the networks of model neurons. Neural Comput. 21(11), 3057–3078 (2009) MathSciNetMATHCrossRefGoogle Scholar
  34. Medvedev, G.S.: Convergence and stochastic stability of continuous time consensus protocols (2010a). arXiv:1007.1234
  35. Medvedev, G.S.: Synchronization of coupled stochastic limit cycle oscillators. Phys. Lett. A 374, 1712–1720 (2010b) CrossRefGoogle Scholar
  36. Medvedev, G.S., Cisternas, J.: Multimodal regimes in a compartmental model of the dopamine neuron. Physica D 194, 333–356 (2004) MathSciNetMATHCrossRefGoogle Scholar
  37. Medvedev, G.S., Kopell, N.: Synchronization and transient dynamics in the chains of electrically coupled FitzHugh–Nagumo oscillators. SIAM J. Appl. Math. 61(5), 1762–1801 (2001) MathSciNetMATHCrossRefGoogle Scholar
  38. Mosekilde, E., Maistrenko, Yu., Postnov, D.: Chaotic Synchronization: Applications to Living Systems. World Scientific, London (2002) MATHCrossRefGoogle Scholar
  39. Olfati-Saber, R., Fax, J.A., Murray, R.M.: Consensus and cooperation in networked multi-agent systems. Proc. IEEE 95(1), 215–233 (2007) CrossRefGoogle Scholar
  40. Pecora, L.M., Carroll, T.L.: Master stability functions for synchronized coupled systems. Phys. Rev. Lett. 80, 2109 (1998) CrossRefGoogle Scholar
  41. Peles, S., Josic, K.: Synchronization in networks of general weakly non-linear oscillators. J. Phys. A 39, 11801–11817 (2004) MathSciNetGoogle Scholar
  42. Pikovsky, A., Rosenblum, M., Kurths, J.: Synchronization: A Universal Concept in Nonlinear Sciences. Cambridge University Press, Cambridge (2001) MATHCrossRefGoogle Scholar
  43. Ren, W., Beard, R.W., Atkins, E.M.: Information consensus in multivehicle cooperative control. IEEE Control Syst. Mag. 71–82 (2007) Google Scholar
  44. Roy, R., Thornburg, K.S. Jr.: Experimental synchronization of chaotic lasers. Phys. Rev. Lett. 72, 2009–2012 (1994) CrossRefGoogle Scholar
  45. Singer, W.: Synchronization of cortical activity and its putative role in information processing and learning. Annu. Rev. Physiol. 55, 349–374 (1993) CrossRefGoogle Scholar
  46. Steur, E., Tyukin, I., Nijmeijer, H.: Semi-passivity and synchronization of diffusively coupled neuronal oscillators. Physica D 238, 2119–2128 (2009) MathSciNetMATHCrossRefGoogle Scholar
  47. Stewart, I., Golubitsky, M., Pivato, M.: Patterns of synchrony in coupled cell networks. SIAM J. Appl. Dyn. Syst. 2 (2003) Google Scholar
  48. Storti, D.W., Rand, R.H.: Dynamics of two strongly coupled van der Pol oscillators. SIAM J. Appl. Math. 46, 56–67 (1986) MathSciNetMATHCrossRefGoogle Scholar
  49. Strogatz, S.: SYNC: The Emerging Science of Spontaneous Order. Hyperion, New York (2003) Google Scholar
  50. Sumpter, D., et al.: Consensus decision making by fish. Curr. Biol. 18(22), 1773–1777 (2008) CrossRefGoogle Scholar
  51. Sun, J., Boyd, S., Xiao, L., Diaconis, P.: The fastest mixing Markov process on a graph and connection to a maximum variance unfolding problem. SIAM Rev. 48(4), 681–699 (2006) Google Scholar
  52. Traub, R.D., Whittington, M.A., Buhl, E.H., LeBeau, F.E., Bibbig, A., Boyd, S., Cross, H., Baldeweg, T.: A possible role for gap junctions in generation of very fast EEG Oscillations preceding the onset of and perhaps initiating, seizures. Epilepsia 42, 153–170 (2001) Google Scholar
  53. Usher, M., Cohen, J.D., Servan-Schreiber, D., Rajkowski, J., Aston-Jones, G.: The role of the Locus Coeruleus in the regulation of cognitive performance. Science 283, 549–554 (1999) CrossRefGoogle Scholar
  54. Wiesenfeld, K., Colet, P., Strogatz, S.: Frequency locking in Josephson arrays: connection with the Kuramoto model. Phys. Rev. E 57, 1563–1569 (1998) CrossRefGoogle Scholar
  55. Xiao, L., Boyd, S.: Fast linear iterations for distributed averaging. Syst. Control Lett. 53, 65–78 (2004) MathSciNetMATHCrossRefGoogle Scholar
  56. Young, G.F., Scardovi, L., Leonard, N.E.: Robustness of noisy consensus dynamics with directed communication. In: Proceedings of the American Control Conference, Baltimore, MD (2010) Google Scholar

Copyright information

© Springer Science+Business Media, LLC 2011

Authors and Affiliations

  1. 1.Department of MathematicsDrexel UniversityPhiladelphiaUSA

Personalised recommendations