Advertisement

Journal of Nonlinear Science

, Volume 21, Issue 2, pp 151–191 | Cite as

Kinetic Equation for a Soliton Gas and Its Hydrodynamic Reductions

  • G. A. ElEmail author
  • A. M. Kamchatnov
  • M. V. Pavlov
  • S. A. Zykov
Article

Abstract

We introduce and study a new class of kinetic equations, which arise in the description of nonequilibrium macroscopic dynamics of soliton gases with elastic collisions between solitons. These equations represent nonlinear integro-differential systems and have a novel structure, which we investigate by studying in detail the class of N-component ‘cold-gas’ hydrodynamic reductions. We prove that these reductions represent integrable linearly degenerate hydrodynamic type systems for arbitrary N which is a strong evidence in favour of integrability of the full kinetic equation. We derive compact explicit representations for the Riemann invariants and characteristic velocities of the hydrodynamic reductions in terms of the ‘cold-gas’ component densities and construct a number of exact solutions having special properties (quasiperiodic, self-similar). Hydrodynamic symmetries are then derived and investigated. The obtained results shed light on the structure of a continuum limit for a large class of integrable systems of hydrodynamic type and are also relevant to the description of turbulent motion in conservative compressible flows.

Keywords

Soliton gas Thermodynamic limit Kinetic equation Hydrodynamic reduction Integrability 

Mathematics Subject Classification (2000)

37K10 37K40 35L60 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Arik, M., Neyzi, F., Nutku, Ya., Olver, P.: Multi-Hamiltonian structure of the Born–Infeld equation. J. Math. Phys. 30, 1338–1344 (1989) CrossRefzbMATHMathSciNetGoogle Scholar
  2. Belokolos, E.D.: Kinetic equations and integrable Hamiltonian systems. Ukr. Math. J. 57, 869–882 (2005) CrossRefMathSciNetGoogle Scholar
  3. Benney, D.J.: Some properties of long nonlinear waves. Stud. Appl. Math. 52, 45–50 (1973) zbMATHGoogle Scholar
  4. Born, M., Infeld, L.: Foundations of a new field theory. Proc. R. Soc. A 144, 425–451 (1934) CrossRefzbMATHGoogle Scholar
  5. Dubrovin, B.A., Novikov, S.P.: Hydrodynamics of weakly deformed soliton lattices. Differential geometry and Hamiltonian theory. Russ. Math. Surv. 44, 35–124 (1989) CrossRefzbMATHMathSciNetGoogle Scholar
  6. El, G.A.: The thermodynamic limit of the Whitham equations. Phys. Lett. A 311, 374–383 (2003) CrossRefzbMATHMathSciNetGoogle Scholar
  7. El, G.A., Kamchatnov, A.M.: Kinetic equation for a dense soliton gas. Phys. Rev. Lett. 95, 204101 (2005) CrossRefGoogle Scholar
  8. El, G.A., Krylov, A.L., Molchanov, S.A., Venakides, S.: Soliton turbulence as the thermodynamic limit of stochastic soliton lattices. Physica D 152–153, 653–664 (2001a). Advances in Nonlinear Mathematics and Science CrossRefMathSciNetGoogle Scholar
  9. El, G.A., Krylov, A.L., Venakides, S.: Unified approach to KdV modulations. Commun. Pure Appl. Math. 54, 1243–1270 (2001b) CrossRefzbMATHMathSciNetGoogle Scholar
  10. Darboux, G.: Leçons sur les systèmes orthogonaux et les coordonnées curvilignes, Paris (1910) Google Scholar
  11. Ferapontov, E.V.: Integration of weakly-nonlinear hydrodynamic systems in Riemann invariants. Phys. Lett. A 158, 112–118 (1991) CrossRefMathSciNetGoogle Scholar
  12. Ferapontov, E.V., Khusnutdinova, K.R.: On integrability of (2+1)-dimensional quasilinear systems. Commun. Math. Phys. 248, 187–206 (2004a) CrossRefzbMATHMathSciNetGoogle Scholar
  13. Ferapontov, E.V., Khusnutdinova, K.R.: The characterization of 2-component (2+1)-dimensional integrable systems of hydrodynamic type. J. Phys. A, Math. Gen 37, 2949–2963 (2004b) CrossRefzbMATHMathSciNetGoogle Scholar
  14. Ferapontov, E.V., Marshall, D.G.: Differential-geometric approach to the integrability of hydrodynamic chains: the Haantjes tensor. Math. Ann. 339, 61–99 (2007) CrossRefzbMATHMathSciNetGoogle Scholar
  15. Flaschka, H., Forest, G., McLaughlin, D.W.: Multiphase averaging and the inverse spectral solutions of the Korteweg–de Vries equation. Commun. Pure Appl. Math. 33, 739–784 (1980) CrossRefzbMATHMathSciNetGoogle Scholar
  16. Gantmacher, F.R.: Applications of the Theory of Matrices. Interscience, New York (1959) zbMATHGoogle Scholar
  17. Gibbons, J.: Collisionless Boltzmann equations and integrable moment equations. Physica D 3, 503–511 (1981) CrossRefzbMATHMathSciNetGoogle Scholar
  18. Gibbons, J., Kodama, Y.: Solving dispersionless Lax equations. In: Ercolani, N., et al. (eds.) Singular Limits of Dispersive Waves. NATO ASI Series B, vol. 320, p. 61. Plenum, New York (1994) Google Scholar
  19. Gibbons, J., Raimondo, A.: Differential geometry of hydrodynamic Vlasov equations. J. Geom. Phys. 57, 1815–1828 (2007) CrossRefzbMATHMathSciNetGoogle Scholar
  20. Gibbons, J., Tsarev, S.P.: Reductions of Benney’s equations. Phys. Lett. A 211, 19–24 (1996) CrossRefzbMATHMathSciNetGoogle Scholar
  21. Gibbons, J., Tsarev, S.P.: Conformal maps and reductions of the Benney equations. Phys. Lett. A 258, 263–270 (1999) CrossRefzbMATHMathSciNetGoogle Scholar
  22. Grava, T., Tian, F.-R.: The generation, propagation, and extinction of multiphases in the KdV zero-dispersion limit. Commun. Pure Appl. Math. 55, 1569–1639 (2002) CrossRefzbMATHMathSciNetGoogle Scholar
  23. Gurevich, A.V., Mazur, N.G., Zybin, K.P.: Statistical limit in a completely integrable system with deterministic initial conditions. J. Exp. Theor. Phys. 90, 797–817 (2000) MathSciNetGoogle Scholar
  24. Johnson, R., Moser, J.: The rotation number for almost periodic potentials. Commun. Math. Phys. 84, 403–438 (1982) CrossRefzbMATHMathSciNetGoogle Scholar
  25. Krichever, I.M.: The averaging method for two-dimensional “integrable” equations. Funct. Anal. Appl. 22, 200–213 (1988) CrossRefzbMATHMathSciNetGoogle Scholar
  26. Krichever, I.M.: Spectral theory of two-dimensional periodic operators and its applications. Russ. Math. Surv. 44, 145–225 (1989) CrossRefzbMATHMathSciNetGoogle Scholar
  27. Kodama, Y.: A method for solving the dispersionless KP equation and its exact solutions. Phys. Lett. A 129, 223–226 (1988a) CrossRefMathSciNetGoogle Scholar
  28. Kodama, Y.: A solution method for the dispersionless KP equation. Prog. Theor. Phys. Suppl. 94, 184 (1988b) CrossRefMathSciNetGoogle Scholar
  29. Kotani, S.: KdV flow on generalized reflectionless potentials. J. Math. Phys. Anal. Geom. 4, 490–528 (2008) zbMATHMathSciNetGoogle Scholar
  30. Lax, P.D.: The zero dispersion limit, a deterministic analog of turbulence. Commun. Pure Appl. Math. 44, 1047–1056 (1991) CrossRefzbMATHMathSciNetGoogle Scholar
  31. Lax, P.D., Levermore, C.D.: The small dispersion limit of the Korteweg–de Vries equation I. Commun. Pure Appl. Math. 36, 253–290 (1983a) CrossRefzbMATHMathSciNetGoogle Scholar
  32. Lax, P.D., Levermore, C.D.: The small dispersion limit of the Korteweg–de Vries equation II. Commun. Pure Appl. Math. 36, 571–593 (1983b) CrossRefzbMATHMathSciNetGoogle Scholar
  33. Lax, P.D., Levermore, C.D.: The small dispersion limit of the Korteweg–de Vries equation III. Commun. Pure Appl. Math. 36, 809–829 (1983c) CrossRefzbMATHMathSciNetGoogle Scholar
  34. Levermore, C.D.: The hyperbolic nature of the zero dispersion KdV limit. Commun. Partial. Differ. Equ. 13, 495–514 (1988) zbMATHMathSciNetGoogle Scholar
  35. Novikov, S.P., Manakov, S.V., Pitaevskii, L.P., Zakharov, V.E.: The Theory of Solitons: The Inverse Scattering Method. Consultants, New York (1984) Google Scholar
  36. Odesskii, A.V., Pavlov, M.V., Sokolov, V.V.: Classification of integrable Vlasov-like equations. Theor. Math. Phys. 154, 248–259 (2008) CrossRefMathSciNetGoogle Scholar
  37. Pavlov, M.V.: Hamiltonian formalism of weakly nonlinear systems in hydrodynamics. Theor. Math. Phys. 73, 1242–1245 (1987) CrossRefzbMATHGoogle Scholar
  38. Pavlov, M.V.: Algebro-geometric approach in the theory of integrable hydrodynamic type systems. Commun. Math. Phys. 272, 469–505 (2007) CrossRefzbMATHGoogle Scholar
  39. Pavlov, M.V., Tsarev, S.P.: Three-Hamiltonian structures of the Egorov hydrodynamic type systems. Funct. Anal. Appl. 37(1), 32–45 (2003) CrossRefzbMATHMathSciNetGoogle Scholar
  40. Pavlov, M.V., Svinolupov, R.A., Sharipov, S.I.: Invariant integrability criterion for equations of hydrodynamic type. Funct. Anal. Appl. 30, 15–22 (1996) CrossRefzbMATHMathSciNetGoogle Scholar
  41. Tsarev, S.P.: On Poisson brackets and one-dimensional Hamiltonian systems of hydrodynamic type. Sov. Math. Dokl. 31, 488–491 (1985) zbMATHGoogle Scholar
  42. Tsarev, S.P.: The geometry of Hamiltonian systems of hydrodynamic type. The generalized hodograph method. Math. USSR Izv. 37, 397–419 (1991) CrossRefMathSciNetGoogle Scholar
  43. Weinstein, M.I., Keller, J.B.: Asymptotic behavior of stability regions for Hill’s equation. SIAM J. Appl. Math. 47, 941–958 (1987) CrossRefzbMATHMathSciNetGoogle Scholar
  44. Whitham, G.B.: Linear and Nonlinear Waves. Wiley, New York (1974) zbMATHGoogle Scholar
  45. Venakides, S.: The Zero Dispersion Limit of the Korteweg–de Vries Equation with Periodic Initial Data. AMS Transactions, vol. 301, pp. 189–226 (1987) Google Scholar
  46. Venakides, S.: The continuum limit of theta functions. Commun. Pure Appl. Math. 42, 711 (1989) CrossRefzbMATHMathSciNetGoogle Scholar
  47. Venakides, S.: The Korteweg–de Vries equation with small dispersion: higher order Lax-Levermore theory. Commun. Pure Appl. Math. 43, 335–361 (1990) CrossRefzbMATHMathSciNetGoogle Scholar
  48. Zakharov, V.E.: Kinetic equation for solitons. Sov. Phys. JETP 33, 538–541 (1971) Google Scholar
  49. Zakharov, V.E.: On the Benney equations. Physica D 3, 193–202 (1981) CrossRefzbMATHGoogle Scholar
  50. Zakharov, V.E.: Dispersionless limit of integrable systems in 2+1 dimensions. In: Ercolani, N.M., et al. (eds.) Singular Limits of Dispersive Waves, pp. 165–174. Plenum, New York (1994) Google Scholar
  51. Zakharov, V.E.: Turbulence in integrable systems. Stud. Appl. Math. 122, 219–234 (2009) CrossRefzbMATHMathSciNetGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2010

Authors and Affiliations

  • G. A. El
    • 1
    Email author
  • A. M. Kamchatnov
    • 2
  • M. V. Pavlov
    • 3
  • S. A. Zykov
    • 4
    • 5
  1. 1.Department of Mathematical SciencesLoughborough UniversityLoughboroughUK
  2. 2.Institute of SpectroscopyRussian Academy of SciencesTroitskRussia
  3. 3.Lebedev Physical InstituteRussian Academy of SciencesMoscowRussia
  4. 4.SISSATriesteItaly
  5. 5.Institute of Metal PhysicsUrals Division of Russian Academy of SciencesEkaterinburgRussia

Personalised recommendations