Journal of Nonlinear Science

, Volume 20, Issue 4, pp 463–521 | Cite as

On a Diffusive Version of the Lifschitz–Slyozov–Wagner Equation

  • Joseph G. ConlonEmail author


This paper is concerned with the Becker–Döring (BD) system of equations and their relationship to the Lifschitz–Slyozov–Wagner (LSW) equations. A diffusive version of the LSW equations is derived from the BD equations. Existence and uniqueness theorems for this diffusive LSW system are proved. The major part of the paper is taken up with proving that solutions of the diffusive LSW system converge in the zero diffusion limit to solutions of the classical LSW system. In particular, it is shown that the rate of coarsening for the diffusive system converges to the rate of coarsening for the classical system.


Nonlinear pde Coarsening 

Mathematics Subject Classification (2000)

35F05 82C70 82C26 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Ball, J.M., Carr, J., Penrose, O.: The Becker Döring cluster equations: basic properties and asymptotic behavior of solutions. Commun. Math. Phys. 104, 657–692 (1986) zbMATHCrossRefMathSciNetGoogle Scholar
  2. Becker, R., Döring, W.: Kinetische Behandlung der Keimbildung in übersättigten Dämpfen. Ann. Phys. (Leipz.) 24, 719–752 (1935) zbMATHCrossRefGoogle Scholar
  3. Collet, J.-F., Goudon, T.: On solutions of the Lifschitz–Slyozov model. Nonlinearity 13, 1239–1262 (2000) zbMATHCrossRefMathSciNetGoogle Scholar
  4. Dai, S., Pego, R.L.: Universal bounds on coarsening rates for mean-field models of phase transitions. SIAM J. Math. Anal. 37, 347–371 (2005) zbMATHCrossRefMathSciNetGoogle Scholar
  5. Farjoun, Y., Neu, J.C.: Exhaustion of nucleation in a closed system. Phys. Rev. E 78, 051402 (2008). 7 pp. CrossRefGoogle Scholar
  6. Karatzas, I., Shreve, S.: Brownian Motion and Stochastic Calculus, 2nd edn. Graduate Texts in Mathematics, vol. 113. Springer, New York (1991) zbMATHGoogle Scholar
  7. Kohn, R.V., Otto, F.: Upper bounds on coarsening rates. Commun. Math. Phys. 229, 375–395 (2002) zbMATHCrossRefMathSciNetGoogle Scholar
  8. Laurençot, P.: The Lifschitz–Slyozov–Wagner equation with conserved total volume. SIAM J. Math. Anal. 34, 257–272 (2002) zbMATHCrossRefMathSciNetGoogle Scholar
  9. Laurençot, P., Mischler, S.: From the Becker–Döring to the Lifschitz–Slyozov–Wagner equations. J. Stat. Phys. 106, 957–991 (2002) zbMATHCrossRefGoogle Scholar
  10. Lifschitz, I.M., Slyozov, V.V.: Kinetics of precipitation from supersaturated solid solutions. J. Phys. Chem. Solids 19, 35–50 (1961) CrossRefGoogle Scholar
  11. Meerson, B.: Fluctuations provide strong selection in Ostwald ripening. Phys. Rev. E 60, 3072–3075 (1999) CrossRefGoogle Scholar
  12. Niethammer, B.: On the evolution of large clusters in the Becker Döring model. J. Nonlinear Sci. 13, 115–155 (2003) zbMATHCrossRefMathSciNetGoogle Scholar
  13. Niethammer, B., Pego, R.L.: Non-self-similar behavior in the LSW theory of Ostwald ripening. J. Stat. Phys. 95, 867–902 (1999) zbMATHCrossRefMathSciNetGoogle Scholar
  14. Niethammer, B., Pego, R.L.: On the initial value problem in the Lifschitz–Slyozov–Wagner theory of Ostwald ripening. SIAM J. Math. Anal. 31, 467–485 (2000) zbMATHCrossRefMathSciNetGoogle Scholar
  15. Niethammer, B., Pego, R.L.: Well-posedness for measure transport in a family of nonlocal domain coarsening models. Indiana Univ. Math. J. 54, 499–530 (2005) zbMATHCrossRefMathSciNetGoogle Scholar
  16. Pego, R.L.: Lectures on dynamics in models of coarsening and coagulation. In: Dynamics in Models of Coarsening, Coagulation, Condensation and Quantization. Lecture Notes Ser. Inst. Math. Sci. Natl. Univ. Singap., vol. 9, pp. 1–61. World Scientific, Singapore (2007) CrossRefGoogle Scholar
  17. Penrose, O.: The Becker Döring equations at large times and their connection with the LSW theory of coarsening. J. Stat. Phys. 89, 305–320 (1997) zbMATHCrossRefMathSciNetGoogle Scholar
  18. Velázquez, J.J.L.: The Becker–Döring equations and the Lifschitz–Slyozov–Wagner theory of coarsening. J. Stat. Phys. 92, 195–236 (1998) zbMATHCrossRefGoogle Scholar
  19. Wagner, C.: Theorie der alterung von niederschlägen durch umlösen. Z. Elektrochem. 65, 581–591 (1961) Google Scholar

Copyright information

© Springer Science+Business Media, LLC 2010

Authors and Affiliations

  1. 1.Department of MathematicsUniversity of MichiganAnn ArborUSA

Personalised recommendations