Journal of Nonlinear Science

, Volume 20, Issue 1, pp 105–129 | Cite as

Heteroclinic Ratchets in Networks of Coupled Oscillators

Article

Abstract

We analyze an example system of four coupled phase oscillators and discover a novel phenomenon that we call a “heteroclinic ratchet”; a particular type of robust heteroclinic network on a torus where connections wind in only one direction. The coupling structure has only one symmetry, but there are a number of invariant subspaces and degenerate bifurcations forced by the coupling structure, and we investigate these. We show that the system can have a robust attracting heteroclinic network that responds to a specific detuning Δ between certain pairs of oscillators by a breaking of phase locking for arbitrary Δ>0 but not for Δ≤0. Similarly, arbitrary small noise results in asymmetric desynchronization of certain pairs of oscillators, where particular oscillators have always larger frequency after the loss of synchronization. We call this heteroclinic network a heteroclinic ratchet because of its resemblance to a mechanical ratchet in terms of its dynamical consequences. We show that the existence of heteroclinic ratchets does not depend on symmetry or number of oscillators but depends on the specific connection structure of the coupled system.

Keywords

Synchronization Coupled oscillators Heteroclinic ratchet Asymmetric desynchronization Synchrony-breaking bifurcation 

Mathematics Subject Classification (2000)

34C15 34C37 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Aguiar, M.A.D., Dias, A.P.S., Golubitsky, M., Leite, M.C.A.: Homogenous coupled cell networks with S 3-symmetric quotient. DCDS Supplement, pp. 1–9 (2007) Google Scholar
  2. Aguiar, M.A.D., Ashwin, P., Dias, A.P.S., Field, M.: Robust heteroclinic cycles in coupled cell systems: identical cells with asymmetric inputs. Preprint (2009) Google Scholar
  3. Ashwin, P., Borresen, J.: Encoding via conjugate symmetries of slow oscillations for globally coupled oscillators. Phys. Rev. E 70(2), 026203 (2004) MathSciNetCrossRefGoogle Scholar
  4. Ashwin, P., Borresen, J.: Discrete computation using a perturbed heteroclinic network. Phys. Lett. A 347(4–6), 208–214 (2005) MathSciNetMATHCrossRefGoogle Scholar
  5. Ashwin, P., Swift, J.W.: The dynamics of n weakly coupled identical oscillators. J. Nonlinear Sci. 2(1), 69–108 (1992) MathSciNetMATHCrossRefGoogle Scholar
  6. Ashwin, P., Burylko, O., Maistrenko, Y., Popovych, O.: Extreme sensitivity to detuning for globally coupled phase oscillators. Phys. Rev. Lett. 96(5), 054102 (2006) CrossRefGoogle Scholar
  7. Ashwin, P., Orosz, G., Wordsworth, J., Townley, S.: Dynamics on networks of clustered states for globally coupled phase oscillators. SIAM J. Appl. Dyn. Syst. 6(4), 728–758 (2007) MathSciNetMATHCrossRefGoogle Scholar
  8. Ashwin, P., Burylko, O., Maistrenko, Y.: Bifurcation to heteroclinic cycles and sensitivity in three and four coupled phase oscillators. Physica D 237, 454–466 (2008) MathSciNetMATHCrossRefGoogle Scholar
  9. Busse, F.H., Clever, R.M.: Nonstationary convection in a rotating system. In: Müller, U., Roesner, K.G., Schmidt, B. (eds.) Recent Developments in Theoretical and Experimental Fluid Dynamics, pp. 376–385. Springer, Berlin (1979) CrossRefGoogle Scholar
  10. Ermentrout, G.B.: A Guide to XPPAUT for Researchers and Students. SIAM, Pittsburgh (2002) MATHGoogle Scholar
  11. Feng, B.Y., Hu, R.: A survey on homoclinic and heteroclinic orbits. Appl. Math. E-Notes 3, 16–37 (2003) (electronic) MathSciNetMATHGoogle Scholar
  12. Golubitsky, M., Stewart, I.: The Symmetry Perspective. Birkhäuser, Basel (2002) MATHCrossRefGoogle Scholar
  13. Golubitsky, M., Stewart, I.: Nonlinear dynamics of networks: The groupoid formalism. Bull. Am. Math. Soc. (N.S.) 43(3), 305–364 (2006) (electronic) MathSciNetMATHCrossRefGoogle Scholar
  14. Golubitsky, M., Pivato, M., Stewart, I.: Interior symmetry and local bifurcation in coupled cell networks. Dyn. Syst. 19(4), 389–407 (2004) MathSciNetMATHCrossRefGoogle Scholar
  15. Guckenheimer, J., Holmes, P.: Structurally stable heteroclinic cycles. Math. Proc. Camb. Philos. Soc. 103, 189–192 (1988) MathSciNetMATHCrossRefGoogle Scholar
  16. Hansel, D., Mato, G., Meunier, C.: Clustering and slow switching in globally coupled phase oscillators. Phys. Rev. E 48(5), 3470–3477 (1993) CrossRefGoogle Scholar
  17. Hofbauer, J., Sigmund, K.: Evolutionary Games and Population Dynamics. Cambridge University Press, Cambridge (1998) MATHGoogle Scholar
  18. Kiss, I.Z., Rusin, C.G., Kori, H., Hudson, J.L.: Engineering complex dynamical structures: Sequential patterns and desynchronization. Science 316, 1886–1889 (2007) MathSciNetCrossRefGoogle Scholar
  19. Kori, H., Kuramoto, Y.: Slow switching in globally coupled oscillators: Robustness and occurence through delayed coupling. Phys. Rev. E 63, 046214 (2001) CrossRefGoogle Scholar
  20. Krupa, M.: Robust heteroclinic cycles. J. Nonlinear Sci. 7(2), 129–176 (1997) MathSciNetMATHCrossRefGoogle Scholar
  21. Krupa, M., Melbourne, I.: Asymptotic stability of heteroclinic cycles in systems with symmetry. Ergod. Theory. Dyn. Syst. 15, 121–147 (1995) MathSciNetMATHCrossRefGoogle Scholar
  22. Kuramoto, Y.: Chemical Oscillations, Waves and Turbulence. Springer, Berlin (1984) MATHCrossRefGoogle Scholar
  23. Melbourne, I.: Intermittency as a codimension-three phenomenon. J. Dyn. Differ. Equ. 1(4), 347–367 (1989) MathSciNetMATHCrossRefGoogle Scholar
  24. Milnor, J.: On the concept of attractor. Commun. Math. Phys. 99, 177–195 (1985) MathSciNetMATHCrossRefGoogle Scholar
  25. Milo, R., Shen-Orr, S., Itzkovitz, S., Kashtan, N., Chklovskii, D., Alon, U.: Network motifs: Simple building blocks of complex networks. Science 298, 824–827 (2002) CrossRefGoogle Scholar
  26. Rabinovich, M.I., Huerta, R., Varona, P., Afraimovich, V.S.: Generation and reshaping of sequences in neural systems. Biol. Cybern. 95, 519–536 (2006a) MathSciNetMATHCrossRefGoogle Scholar
  27. Rabinovich, M.I., Varona, P., Selverston, A.I., Abarbanel, H.D.I.: Dynamical principles in neuroscience. Rev. Mod. Phys. 95, 519–536 (2006b) MATHGoogle Scholar
  28. Sakaguchi, H., Kuramoto, Y.: A soluble active rotator model showing phase transitions via mutual entrainment. Prog. Theor. Phys. 76(3), 576–581 (1986) MathSciNetCrossRefGoogle Scholar
  29. Sporns, O., Kötter, R.: Motifs in brain networks. PLoS Biol. 2(11), 1910–1918 (2004) CrossRefGoogle Scholar
  30. Stone, E., Holmes, P.: Random perturbations of heteroclinic attractors. SIAM J. Appl. Math. 50(3), 726–743 (1990) MathSciNetMATHCrossRefGoogle Scholar
  31. Strogatz, S.H.: From Kuramoto to Crawford: Exploring the onset of synchronization in populations of coupled oscillators. Physica D 143, 1–20 (2000) MathSciNetMATHCrossRefGoogle Scholar
  32. Zhai, Y.M., Kiss, I.Z., Daido, H., Hudson, J.L.: Extracting order parameters from global measurements with application to coupled electrochemical oscillators. Physica D 205, 57–69 (2005) MATHCrossRefGoogle Scholar
  33. Zhigulin, P.Z.: Dynamical motifs: Building blocks of complex dynamics in sparsely connected random networks. Phys. Rev. Lett. 92(23), 238701 (2004) CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2009

Authors and Affiliations

  1. 1.Mathematics Research Institute, School of Engineering, Computing and MathematicsUniversity of ExeterExeterUK

Personalised recommendations