Journal of Nonlinear Science

, Volume 19, Issue 5, pp 497–545 | Cite as

Reliability of Coupled Oscillators

Article

Abstract

We study the reliability of phase oscillator networks in response to fluctuating inputs. Reliability means that an input elicits essentially identical responses upon repeated presentations, regardless of the network’s initial condition. Single oscillators are well known to be reliable. We show in this paper that unreliable behavior can occur in a network as small as a coupled oscillator pair in which the signal is received by the first oscillator and relayed to the second with feedback. A geometric explanation based on shear-induced chaos at the onset of phase-locking is proposed. We treat larger networks as decomposed into modules connected by acyclic graphs, and give a mathematical analysis of the acyclic parts. Moreover, for networks in this class, we show how the source of unreliability can be localized, and address questions concerning downstream propagation of unreliability once it is produced.

Keywords

Coupled oscillators Random dynamical systems Neural network dynamics 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Arnold, L.: Random Dynamical Systems. Springer, New York (2003) Google Scholar
  2. Arnold, L., Imkeller, P., Sri Namachchivaya, N.: The asymptotic stability of a noisy non-linear oscillator. J. Sound Vib. 269, 1003–1029 (2004) CrossRefMathSciNetGoogle Scholar
  3. Baxendale, P.H.: Stability and equilibrium properties of stochastic flows of diffeomorphisms. In: Progress Probab., vol. 27. Birkhauser, Boston (1992) Google Scholar
  4. Baxendale, P.H., Goukasian, L.: Lyapunov exponents for small perturbations of Hamiltonian systems. Ann. Probab. 30(1), 101–134 (2002) CrossRefMathSciNetMATHGoogle Scholar
  5. Brown, E., Holmes, P., Moehlis, J.: Globally coupled oscillator networks. In: Kaplan, E., Marsden, J.E., Sreenivasan, K.R. (eds.) Problems and Perspectives in Nonlinear Science: A Celebratory Volume in Honor of Lawrence Sirovich, pp. 183–215. Springer, New York (2003) Google Scholar
  6. Bryant, H.L., Segundo, J.P.: Spike initiation by transmembrane current: a white-noise analysis. J. Physiol. 260, 279–314 (1976) Google Scholar
  7. Chow, C.C.: Phase-locking in weakly heterogeneous neuronal networks. Physica D 118, 343–370 (1998) CrossRefMathSciNetGoogle Scholar
  8. Eckmann, J.-P., Ruelle, D.: Ergodic theory of chaos and strange attractors. Rev. Mod. Phys. 57, 617–656 (1985) CrossRefMathSciNetGoogle Scholar
  9. Ermentrout, G.B.: n:m phase locking of weakly coupled oscillators. J. Math. Biol. 12, 327–342 (1981) CrossRefMathSciNetMATHGoogle Scholar
  10. Ermentrout, G.B.: Neural networks as spatio-temporal pattern-forming systems. Rep. Prog. Phys. 61, 353–430 (1991) CrossRefGoogle Scholar
  11. Ermentrout, G.B.: Type I membranes, phase resetting curves, and synchrony. Neural Comput. 8, 979–1001 (1996) CrossRefGoogle Scholar
  12. Ermentrout, G.B., Kopell, N.: Multiple pulse interactions and averaging in coupled neural oscillators. J. Math. Biol. 29, 195–217 (1991) CrossRefMathSciNetMATHGoogle Scholar
  13. Gerstner, W., van Hemmen, J.L., Cowan, J.D.: What matters in neuronal locking?. Neural Comput. 8(8), 1653–1676 (1996) CrossRefGoogle Scholar
  14. Goldobin, D., Pikovsky, A.: Synchronization and desynchronization of self-sustained oscillators by common noise. Phys. Rev. E 71, 045201–045204 (2005) CrossRefMathSciNetGoogle Scholar
  15. Goldobin, D., Pikovsky, A.: Antireliability of noise-driven neurons. Phys. Rev. E 73, 061906-1–061906-4 (2006) CrossRefMathSciNetGoogle Scholar
  16. Guckenheimer, J.: Isochronous and phaseless sets. J. Math. Biol. 1, 259–273 (1975) CrossRefMathSciNetMATHGoogle Scholar
  17. Guckenheimer, J., Holmes, P.: Nonlinear Oscillations, Dynamical Systems, and Bifurcations of Vector Fields. Springer, Berlin (1983) MATHGoogle Scholar
  18. Gutkin, B., Ermentrout, G.B., Rudolph, M.: Spike generating dynamics and the conditions for spike-time precision in cortical neurons. J. Comput. Neurosci. 15, 91–103 (2003) CrossRefGoogle Scholar
  19. Hansel, D., Mato, G., Meunier, C.: Synchrony in excitatory neural networks. Neural Comput. 7, 307–337 (1995) CrossRefGoogle Scholar
  20. Herz, A.V., Hopfield, J.J.: Earthquake cycles and neural reverberations: collective oscillations in systems with pulse-coupled threshold elements. Phys. Rev. Lett. 75, 1222–1225 (1995) CrossRefGoogle Scholar
  21. Hoppensteadt, F.C., Izhikevich, E.M.: Weakly Connected Neural Networks. Springer, New York (1997) Google Scholar
  22. Kifer, Yu.: Ergodic Theory of Random Transformations. Birkhauser, Boston (1986) MATHGoogle Scholar
  23. Kosmidis, E., Pakdaman, K.: Analysis of reliability in the Fitzhugh–Nagumo neuron model. J. Comput. Neurosci. 14, 5–22 (2003) CrossRefGoogle Scholar
  24. Kozachenko, L.F., Leonenko, N.N.: Sample estimate of the entropy of a random vector. Probl. Inf. Transm. 23 (1987) Google Scholar
  25. Kunita, H.: Stochastic flows and stochastic differential equations. Cambridge Studies in Advanced Mathematics, vol. 24. Cambridge University Press, Cambridge (1990) MATHGoogle Scholar
  26. Kuramoto, Y.: Phase- and center-manifold reductions for large populations of coupled oscillators with application to non-locally coupled systems. Int. J. Bifurc. Chaos 7, 789–805 (1997) CrossRefMathSciNetMATHGoogle Scholar
  27. Le Jan, Y.: Équilibre statistique pour les produits de difféomorphismes aléatoires indépendants. Ann. Inst. H. Poincaré Probab. Stat. 23(1), 111–120 (1987) MathSciNetMATHGoogle Scholar
  28. Ledrappier, F., Young, L.-S.: Entropy formula for random transformations. Probab. Theory Relat. Fields 80, 217–240 (1988) CrossRefMathSciNetMATHGoogle Scholar
  29. Lin, K.K., Young, L.-S.: Shear-induced chaos. Nonlinearity 21, 899–922 (2008) CrossRefMathSciNetMATHGoogle Scholar
  30. Mainen, Z., Sejnowski, T.: Reliability of spike timing in neocortical neurons. Science 268, 1503–1506 (1995) CrossRefGoogle Scholar
  31. Mattila, P.: Geometry of Sets and Measures in Euclidean Space. Cambridge University Press, Cambridge (1995) Google Scholar
  32. Nakao, H., Arai, K., Nagai, K., Tsubo, Y., Kuramoto, Y.: Synchrony of limit-cycle oscillators induced by random external impulses. Phys. Rev. E 72, 026220-1–026220-13 (2005) CrossRefMathSciNetGoogle Scholar
  33. Nualart, D.: The Malliavin Calculus and Related Topics. Springer, Berlin (2006) MATHGoogle Scholar
  34. Nunes, A.M., Pereira, J.V.: Phase-locking of two Andronov clocks with a general interaction. Phys. Lett. A 107, 362–366 (1985) CrossRefGoogle Scholar
  35. Pakdaman, K., Mestivier, D.: External noise synchronizes forced oscillators. Phys. Rev. E 64, 030901–030904 (2001) CrossRefGoogle Scholar
  36. Peskin, C.S.: Mathematical Aspects of Heart Physiology. Courant Institute of Mathematical Sciences, New York (1988) Google Scholar
  37. Pikovsky, A., Rosenblum, M., Kurths, J.: Synchronization: A Universal Concept in Nonlinear Sciences. Cambridge University Press, Cambridge (2001) MATHGoogle Scholar
  38. Popovych, O.V., Maistrenko, Y.L., Tass, P.A.: Phase chaos in coupled oscillators. Phys. Rev. E 71, 065201-1–065201-4 (2005) CrossRefMathSciNetGoogle Scholar
  39. Rinzel, J., Ermentrout, G.B.: Analysis of neural excitability and oscillations. In: Koch, C., Segev, I. (eds.) Methods in Neuronal Modeling, pp. 251–291. MIT Press, Cambridge (1998) Google Scholar
  40. Ritt, J.: Evaluation of entrainment of a nonlinear neural oscillator to white noise. Phys. Rev. E 68, 041915–041921 (2003) CrossRefMathSciNetGoogle Scholar
  41. Strogatz, S.: From Kuramoto to Crawford: Exploring the onset of synchronization in populations of coupled oscillators. Physica D 143, 1–20 (2000) CrossRefMathSciNetMATHGoogle Scholar
  42. Strogatz, S., Mirollo, R.: Synchronization of pulse-coupled biological oscillators. SIAM J. Appl. Math. 50, 1645–1662 (1990) CrossRefMathSciNetMATHGoogle Scholar
  43. Taylor, D., Holmes, P.: Simple models for excitable and oscillatory neural networks. J. Math. Biol. 37, 419–446 (1998) CrossRefMathSciNetMATHGoogle Scholar
  44. Teramae, J., Fukai, T.: Reliability of temporal coding on pulse-coupled networks of oscillators (2007). arXiv:0708.0862v1 [nlin.AO]
  45. Teramae, J., Tanaka, D.: Robustness of the noise-induced phase synchronization in a general class of limit cycle oscillators. Phys. Rev. Lett. 93, 204103–204106 (2004) CrossRefGoogle Scholar
  46. Victor, J.D.: Binless strategies for estimation of information from neural data. Phys. Rev. E 66 (2002) Google Scholar
  47. Wang, Q., Young, L.-S.: Strange attractors with one direction of instability. Commun. Math. Phys. 218, 1–97 (2001) CrossRefMathSciNetMATHGoogle Scholar
  48. Wang, Q., Young, L.-S.: From invariant curves to strange attractors. Commun. Math. Phys. 225, 275–304 (2002) CrossRefMathSciNetMATHGoogle Scholar
  49. Wang, Q., Young, L.-S.: Strange attractors in periodically-kicked limit cycles and Hopf bifurcations. Commun. Math. Phys. 240, 509–529 (2003) MathSciNetMATHGoogle Scholar
  50. Wang, Q., Young, L.-S.: Toward a theory of rank one attractors. Ann. Math. (2009, to appear) Google Scholar
  51. Winfree, A.: Patterns of phase compromise in biological cycles. J. Math. Biol. 1, 73–95 (1974) CrossRefMathSciNetMATHGoogle Scholar
  52. Winfree, A.: The Geometry of Biological Time. Springer, New York (2001) MATHGoogle Scholar
  53. Young, L.-S.: Ergodic theory of differentiable dynamical systems. In: Real and Complex Dynamics. NATO ASI Series, pp. 293–336. Kluwer Academic, Dordrecht (1995) Google Scholar
  54. Young, L.-S.: What are SRB measures, and which dynamical systems have them? J. Stat. Phys. 108(5), 733–754 (2002) CrossRefMATHGoogle Scholar
  55. Zaslavsky, G.: The simplest case of a strange attractor. Phys. Lett. A 69(3), 145–147 (1978) CrossRefMathSciNetGoogle Scholar
  56. Zhou, C., Kurths, J.: Noise-induced synchronization and coherence resonance of a Hodgkin–Huxley model of thermally sensitive neurons. Chaos 13, 401–409 (2003) CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2009

Authors and Affiliations

  • Kevin K. Lin
    • 1
  • Eric Shea-Brown
    • 2
  • Lai-Sang Young
    • 3
  1. 1.Department of MathematicsUniversity of ArizonaTucsonUSA
  2. 2.Department of Applied MathematicsUniversity of WashingtonSeattleUSA
  3. 3.Courant Institute of Mathematical SciencesNew York UniversityNew YorkUSA

Personalised recommendations