Advertisement

Journal of Nonlinear Science

, Volume 19, Issue 3, pp 267–300 | Cite as

A Variational Theory for Point Defects in Patterns

  • N. M. ErcolaniEmail author
  • S. C. Venkataramani
Article

Abstract

We derive a rigorous scaling law for minimizers in a natural version of the regularized Cross–Newell model for pattern formation far from threshold. These energy-minimizing solutions support defects having the same character as what is seen in experimental studies of the corresponding physical systems and in numerical simulations of the microscopic equations that describe these systems.

Keywords

Patterns Defects Calculus of variations 

Mathematics Subject Classification (2000)

35J35 35J60 41A60 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Abramowitz, M., Stegun, I.A.: Handbook of Mathematical Functions with Formulas, Graphs, and Mathematical Tables. National Bureau of Standards Applied Mathematics Series, vol. 55, For sale by the Superintendent of Documents. U.S. Government Printing Office, Washington (1964). MR MR0167642 (29 #4914) zbMATHGoogle Scholar
  2. Adams, R.A.: Sobolev Spaces. Pure and Applied Mathematics, vol. 65. Academic [A subsidiary of Harcourt Brace Jovanovich, Publishers], New York (1975). MR MR0450957 (56 #9247) zbMATHGoogle Scholar
  3. Alouges, F., Rivière, T., Serfaty, S.: Néel and cross-tie wall energies for planar micromagnetic configurations. ESAIM Control Optim. Calc. Var. 8, 31–68 (2002) (electronic), A tribute to J.L. Lions. MR MR1932944 (2004b:82060) zbMATHCrossRefMathSciNetGoogle Scholar
  4. Ambrosio, L., De Lellis, C., Mantegazza, C.: Line energies for gradient vector fields in the plane. Calc. Var. Partial Differ. Equ. 9(4), 327–355 (1999). MR MR1731470 (2001g:74021) zbMATHCrossRefGoogle Scholar
  5. Aviles, P., Giga, Y.: On lower semicontinuity of a defect energy obtained by a singular limit of the Ginzburg–Landau type energy for gradient fields. Proc. R. Soc. Edinb. Sect. A 129(1), 1–17 (1999). MR MR1669225 (2001a:49003) zbMATHMathSciNetGoogle Scholar
  6. Collet, P., Eckmann, J.-P.: Instabilities and Fronts in Extended Systems. Princeton Series in Physics. Princeton University Press, Princeton (1990). MR MR1109707 (92e:58063) zbMATHGoogle Scholar
  7. Conti, S., De Lellis, C.: Sharp upper bounds for a variational problem with singular perturbation. Math. Ann. 338(1), 119–146 (2007). MR MR2295507 zbMATHCrossRefMathSciNetGoogle Scholar
  8. Cross, M.C., Newell, A.C.: Convection patterns in large aspect ratio systems. Physica D 10(3), 299–328 (1984). MR MR763474 (85j:76016) zbMATHCrossRefMathSciNetGoogle Scholar
  9. DeSimone, A., Müller, S., Kohn, R.V., Otto, F.: A compactness result in the gradient theory of phase transitions. Proc. R. Soc. Edinb. Sect. A 131(4), 833–844 (2001). MR MR1854999 (2002f:49021) zbMATHCrossRefGoogle Scholar
  10. Ercolani, N., Taylor, M.: The Dirichlet-to-Neumann map, viscosity solutions to eikonal equations, and the self-dual equations of pattern formation. Physica D 196(3–4), 205–223 (2004). MR MR2090351 (2005h:35067) zbMATHCrossRefMathSciNetGoogle Scholar
  11. Ercolani, N.M., Indik, R., Newell, A.C., Passot, T.: The geometry of the phase diffusion equation. J. Nonlinear Sci. 10(2), 223–274 (2000). MR MR1743400 (2001a:76068) zbMATHCrossRefMathSciNetGoogle Scholar
  12. Ercolani, N., Indik, R., Newell, A.C., Passot, T.: Global description of patterns far from onset: a case study. Physica D 184(1–4), 127–140 (2003). Complexity and nonlinearity in physical systems (Tucson, AZ, 2001). MR MR2030681 (2004k:76049) zbMATHCrossRefMathSciNetGoogle Scholar
  13. Ercolani, N., Shieh, T.-T., Venkataramani, S.: Calculus of variations for disclinations in harmonic director fields. Unpublished notes (2008) Google Scholar
  14. Evans, L.C.: Partial Differential Equations. American Mathematical Society, Providence (1998). MR 99e:35001 zbMATHGoogle Scholar
  15. Fatkullin, I., Slastikov, V.: A note on the Onsager model of nematic phase transitions. Commun. Math. Sci. 3(1), 21–26 (2005). MR MR2132823 (2006d:82026) zbMATHMathSciNetGoogle Scholar
  16. Fatkullin, I., Slastikov, V.: On spatial variations of nematic ordering. Physica D 237(20), 2577–2586 (2008) zbMATHCrossRefMathSciNetGoogle Scholar
  17. Jin, W., Kohn, R.V.: Singular perturbation and the energy of folds. J. Nonlinear Sci. 10(3), 355–390 (2000). MR 1 752 602 zbMATHCrossRefMathSciNetGoogle Scholar
  18. Kléman, M.: Points, Lines and Walls. In Liquid Crystals, Magnetic Systems and Various Ordered Media. Wiley, New York (1983). MR MR734901 (85e:82058) Google Scholar
  19. Meevasana, W., Ahlers, G.: Rayleigh-Bénard convection in elliptic and stadium-shaped containers. Phys. Rev. E 66(4), 046308 (2002) CrossRefGoogle Scholar
  20. Poliakovsky, A.: Upper bounds for singular perturbation problems involving gradient fields. J. Eur. Math. Soc. (JEMS) 9(1), 1–43 (2007). MR MR2283101 (2007m:49014) zbMATHMathSciNetCrossRefGoogle Scholar
  21. Swift, J., Hohenberg, P.C.: Hydrodynamic fluctuations at the convective instability. Phys. Rev. A 15(1), 319–328 (1977) CrossRefGoogle Scholar
  22. Whittaker, E.T., Watson, G.N.: A Course of Modern Analysis. Cambridge Mathematical Library. Cambridge University Press, Cambridge (1996). An introduction to the general theory of infinite processes and of analytic functions; with an account of the principal transcendental functions, Reprint of the fourth (1927) edition. MR MR1424469 (97k:01072) zbMATHGoogle Scholar
  23. Ziemer, W.P.: Weakly Differentiable Functions. Graduate Texts in Mathematics, vol. 120. Springer, New York (1989). Sobolev spaces and functions of bounded variation. MR 91e:46046 zbMATHGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2008

Authors and Affiliations

  1. 1.Dept. of Math.Univ. of ArizonaTucsonUSA

Personalised recommendations