Advertisement

Contrast-enhanced modified 3D T1-weighted TSE black-blood imaging can improve detection of infectious and neoplastic meningitis

  • Nora Navina SommerEmail author
  • Romina Pons Lucas
  • Eva Coppenrath
  • Hendrik Kooijman
  • Franziska Galiè
  • Nina Hesse
  • Wieland H. Sommer
  • Karla M. Treitl
  • Tobias Saam
  • Matthias F. Froelich
Neuro
  • 8 Downloads

Abstract

Objectives

To evaluate the diagnostic value of a contrast-enhanced 3D T1-weighted-modified volumetric isotropic turbo spin-echo acquisition sequence (T1-mVISTA) in comparison with a conventional 3D T1-weighted magnetization-prepared rapid gradient-echo (T1-MP-RAGE) sequence for the detection of meningeal enhancement in patients with meningitis.

Methods

Thirty patients (infectious meningitis, n = 12; neoplastic meningitis, n = 18) and 45 matched controls were enrolled in this retrospective case-control study. Sets of randomly selected T1-mVISTA and T1-MP-RAGE images (both with 0.8-mm isotropic resolution) were read separately 4 weeks apart. Image quality, leptomeningeal and dural enhancement, grading of visual contrast enhancement, and diagnostic confidence were compared using the Kruskal-Wallis rank sum test.

Results

Image quality was rated to be good to excellent in 75 out of 75 cases (100%) for T1-mVISTA and 74 out of 75 cases (98.7%) for T1-MP-RAGE. T1-mVISTA detected significantly more patients with leptomeningeal enhancement (p = 0.006) compared with T1-MP-RAGE (86.7 vs. 50.0%, p < 0.001), each with specificity of 100%. Similarly, sensitivity of T1-mVISTA for the detection of dural and/or leptomeningeal enhancement was also significantly higher compared with that of T1-MP-RAGE (96.7 vs. 80.0%, p = 0.025) without significant differences regarding specificity (97.8 vs. 95.6%, p = 0.317). No significant differences were found for dural enhancement alone. Diagnostic confidence in T1-mVISTA was significantly higher (p = 0.01). Visual contrast enhancement was tendentially higher in T1-mVISTA.

Conclusions

T1-mVISTA may be an adequate and probably better alternative to T1-MP-RAGE for detection of leptomeningeal diseases.

Key Points

Black-blood T1-mVISTA showed a significant higher sensitivity for the detection of leptomeningeal enhancement compared with MP-RAGE without losses regarding specificity.

Diagnostic confidence was assessed significantly higher in T1-mVISTA.

T1-mVISTA should be considered a supplement or an alternative to T1-MP-RAGE in patients with suspected leptomeningeal diseases.

Keywords

Magnetic resonance imaging Meningeal carcinomatosis Meningitis Meninges 

Abbreviations

3D

Three-dimensional

CE

Contrast-enhanced

CNR

Contrast-to-noise ratio

CSF

Cerebrospinal fluid

FLAIR

Fluid-attenuated inversion recovery

GRE

Gradient echo

MRI

Magnetic resonance imaging

SE

Spin echo

T1-MP-RAGE

T1-weighted magnetization-prepared rapid gradient echo

T1-mVISTA

T1-weighted-modified volumetric isotropic turbo spin-echo acquisition

T1-SPACE

T1 sampling perfection with application-optimized contrasts by using different flip angle evolutions

T1

T1-weighted

T2

T2-weighted

TSE

Turbo spin echo

Notes

Funding information

The authors state that this work has not received any funding.

Compliance with ethical standards

Guarantor

The scientific guarantor of this publication is Nora Navina Sommer.

Conflict of interest

Dr. Hendrik Kooijman is an employee of Philips Healthcare.

For the remaining authors, no conflicts of interests were declared.

Statistics and biometry

No complex statistical methods were necessary for this paper.

Informed consent

Written informed consent was waived by the Institutional Review Board.

Ethical approval

Institutional Review Board approval was obtained.

Methodology

• retrospective

• case-control study

• performed at one institution

Supplementary material

330_2019_6475_MOESM1_ESM.docx (27 kb)
ESM 1 (DOCX 26 kb)

References

  1. 1.
    GBD 2017 Disease and Injury Incidence and Prevalence Collaborators (2018) Global, regional, and national incidence, prevalence, and years lived with disability for 354 diseases and injuries for 195 countries and territories, 1990–2017: a systematic analysis for the Global Burden of Disease Study 2017. Lancet 392:1789–1858Google Scholar
  2. 2.
    McGill F, Heyderman RS, Panagiotou S, Tunkel AR, Solomon T (2016) Acute bacterial meningitis in adults. Lancet 388:3036–3047CrossRefGoogle Scholar
  3. 3.
    Gleissner B, Chamberlain MC (2006) Neoplastic meningitis. Lancet Neurol 5:443–452CrossRefGoogle Scholar
  4. 4.
    Van De Beek D, Brouwer MC, Thwaites GE, Tunkel AR (2012) Advances in treatment of bacterial meningitis. Lancet 380:1693–1702CrossRefGoogle Scholar
  5. 5.
    Young N, Thomas M (2018) Meningitis in adults: diagnosis and management. Intern Med J 48:1294–1307CrossRefGoogle Scholar
  6. 6.
    Pellerino A, Bertero L, Rudà R, Soffietti R (2018) Neoplastic meningitis in solid tumors: from diagnosis to personalized treatments. Ther Adv Neurol Disord.  https://doi.org/10.1177/1756286418759618 CrossRefGoogle Scholar
  7. 7.
    van de Beek D, de Gans J, Spanjaard L, Weisfelt M, Reitsma JB, Vermeulen M (2004) Clinical features and prognostic factors in adults with bacterial meningitis. N Engl J Med 351:1849–1859CrossRefGoogle Scholar
  8. 8.
    Brouwer MC, Thwaites GE, Tunkel AR, Van De Beek D (2012) Dilemmas in the diagnosis of acute community-acquired bacterial meningitis. Lancet 380:1684–1691CrossRefGoogle Scholar
  9. 9.
    Viallon A, Desseigne N, Marjollet O et al (2011) Meningitis in adult patients with a negative direct cerebrospinal fluid examination: value of cytochemical markers for differential diagnosis. Crit Care 15:R136.  https://doi.org/10.1186/cc10254 CrossRefPubMedPubMedCentralGoogle Scholar
  10. 10.
    van Oostenbrugge RJ, Twijnstra A (1999) Presenting features and value of diagnostic procedures in leptomeningeal metastases. Neurology 53:382–385CrossRefGoogle Scholar
  11. 11.
    Fizazi K, Asselain B, Vincent-Salomon A et al (1996) Meningeal carcinomatosis in patients with breast carcinoma: clinical features, prognostic factors, and results of a high-dose intrathecal methotrexate regimen. Cancer 77:1315–1323CrossRefGoogle Scholar
  12. 12.
    Lummel N, Koch M, Klein M, Pfister HW, Brückmann H, Linn J (2016) Spectrum and prevalence of pathological intracranial magnetic resonance imaging findings in acute bacterial meningitis. Clin Neuroradiol 26:159–167CrossRefGoogle Scholar
  13. 13.
    Mugler JP 3rd, Brookeman JR (1990) Three-dimensional magnetization-prepared rapid gradient-echo imaging (3D MP RAGE). Magn Reson Med 15:152–157CrossRefGoogle Scholar
  14. 14.
    Chamberlain M, Junck L, Brandsma D et al (2017) Leptomeningeal metastases: a RANO proposal for response criteria. Neuro Oncol 19:484–492CrossRefGoogle Scholar
  15. 15.
    Le Rhun E, Weller M, Brandsma D et al (2017) EANO–ESMO clinical practice guidelines for diagnosis, treatment and follow-up of patients with leptomeningeal metastasis from solid tumours. Ann Oncol 28(suppl_4):iv84–iv99CrossRefGoogle Scholar
  16. 16.
    Griffiths PD, Coley SC, Romanowski CAJ, Hodgson T, Wilkinson ID (2003) Contrast-enhanced fluid-attenuated inversion recovery imaging for leptomeningeal disease in children. AJNR Am J Neuroradiol 24:719–723PubMedGoogle Scholar
  17. 17.
    Sze G, Soletsky S, Bronen R, Krol G (1989) MR imaging of the cranial meninges with emphasis on contrast enhancement and meningeal carcinomatosis. AJR Am J Roentgenol 153:1039–1049CrossRefGoogle Scholar
  18. 18.
    Sze G (1993) Diseases of the intracranial meninges: MR imaging features. AJR Am J Roentgenol 160:727–733CrossRefGoogle Scholar
  19. 19.
    Patel N, Kirmi O (2009) Anatomy and imaging of the normal meninges. Semin Ultrasound CT MRI 30:559–564CrossRefGoogle Scholar
  20. 20.
    Mohan S, Jain KK, Arabi M, Shah GV (2012) Imaging of meningitis and ventriculitis. Neuroimaging Clin N Am 22:557–583CrossRefGoogle Scholar
  21. 21.
    Farn J, Mirowitz SA (1994) MR imaging of the normal meninges: comparison of contrast-enhancement patterns on 3D gradient-echo and spin-echo images. AJR Am J Roentgenol 162:131–135CrossRefGoogle Scholar
  22. 22.
    Kammer NN, Coppenrath E, Treitl KM, Kooijman H, Dietrich O, Saam T (2016) Comparison of contrast-enhanced modified T1-weighted 3D TSE black-blood and 3D MP-RAGE sequences for the detection of cerebral metastases and brain tumours. Eur Radiol 26:1818–1825CrossRefGoogle Scholar
  23. 23.
    Sommer NN, Saam T, Coppenrath E et al (2017) Multiple sclerosis: improved detection of active cerebral lesions with 3-dimensional T1 black-blood magnetic resonance imaging compared with conventional 3-dimensional T1 GRE imaging. Invest Radiol 53:13–19CrossRefGoogle Scholar
  24. 24.
    Akeson P, Nordström CH, Holtås S (1997) Time-dependency in brain lesion enhancement with gadodiamide injection. Acta Radiol 38:19–24CrossRefGoogle Scholar
  25. 25.
    Uysal E, Erturk SM, Yildirim H, Seleker F, Basak M (2007) Sensitivity of immediate and delayed gadolinium-enhanced MRI after injection of 0.5 M and 1.0 M gadolinium chelates for detecting multiple sclerosis lesions. AJR Am J Roentgenol 188:697–702CrossRefGoogle Scholar
  26. 26.
    Smirniotopoulos JG, Murphy FM, Rushing EJ, Rees JH, Schroeder JW (2007) Patterns of contrast enhancement in the brain and meninges. Radiographics 27:525–551CrossRefGoogle Scholar
  27. 27.
    Phillips ME, Ryals TJ, Kambhu SA, Yuh WT (1990) Neoplastic vs inflammatory meningeal enhancement with Gd-DTPA. J Comput Assist Tomogr 14:536–541CrossRefGoogle Scholar
  28. 28.
    Singh SK, Agris JM, Leeds NE, Ginsberg LE (2000) Intracranial leptomeningeal metastases: comparison of depiction at FLAIR and contrast-enhanced MR imaging. Radiology 217:50–53CrossRefGoogle Scholar
  29. 29.
    Singh SK, Leeds NE, Ginsberg LE (2002) MR imaging of leptomeningeal metastases: comparison of three sequences. AJNR Am J Neuroradiol 23:817–821PubMedPubMedCentralGoogle Scholar
  30. 30.
    Fukuoka H, Hirai T, Okuda T et al (2010) Comparison of the added value of contrast-enhanced 3D fluid-attenuated inversion recovery and magnetization-prepared rapid acquisition of gradient echo sequences in relation to conventional postcontrast T1-weighted images for the evaluation of leptomening. AJNR Am J Neuroradiol 31:868–873CrossRefGoogle Scholar
  31. 31.
    Gil B, Hwang EJ, Lee S et al (2016) Detection of leptomeningeal metastasis by contrast-enhanced 3D T1-SPACE: comparison with 2D FLAIR and contrast-enhanced 2D T1-weighted images. PLoS One.  https://doi.org/10.1371/journal.pone.0163081 CrossRefGoogle Scholar
  32. 32.
    Kamran S, Bener AB, Alper D, Bakshi R (2004) Role of fluid-attenuated inversion recovery in the diagnosis of meningitis: comparison with contrast-enhanced magnetic resonance imaging. J Comput Assist Tomogr 28:68–72CrossRefGoogle Scholar
  33. 33.
    Jeevanandham B, Kalyanpur T, Gupta P, Cherian M (2017) Comparison of post-contrast 3D-T1-MPRAGE, 3D-T1-SPACE and 3D-T2-FLAIR MR images in evaluation of meningeal abnormalities at 3-T MRI. Br J Radiol 90:1–10CrossRefGoogle Scholar
  34. 34.
    Kato Y, Higano S, Tamura H et al (2009) Usefulness of contrast-enhanced T1-weighted sampling perfection with application-optimized contrasts by using different flip angle evolutions in detection of small brain metastasis at 3T MR imaging: comparison with magnetization-prepared rapid acquisition. AJNR Am J Neuroradiol 30:923–929CrossRefGoogle Scholar
  35. 35.
    Park J, Kim EY (2010) Contrast-enhanced, three-dimensional, whole-brain, black-blood imaging: application to small brain metastases. Magn Reson Med 63:553–561CrossRefGoogle Scholar
  36. 36.
    Yang S, Nam Y, Kim MO, Kim EY, Park J, Kim DH (2013) Computer-aided detection of metastatic brain tumors using magnetic resonance black-blood imaging. Invest Radiol 48:113–119CrossRefGoogle Scholar
  37. 37.
    Oh J, Choi SH, Lee E et al (2018) Application of 3D fast spin-echo T1 black-blood imaging in the diagnosis and prognostic prediction of patients with leptomeningeal carcinomatosis. AJNR Am J Neuroradiol 39:1453–1459CrossRefGoogle Scholar
  38. 38.
    Schörner W, Laniado M, Niendorf HP, Schubert C, Felix R (1986) Time-dependent changes in image contrast in brain tumors after gadolinium-DTPA. AJNR Am J Neuroradiol 7:1013–1020PubMedGoogle Scholar
  39. 39.
    Eikendal ALM, Blomberg BA, Haaring C et al (2016) 3D black blood VISTA vessel wall cardiovascular magnetic resonance of the thoracic aorta wall in young, healthy adults: reproducibility and implications for efficacy trial sample sizes: a cross-sectional study. J Cardiovasc Magn Reson 18:20.  https://doi.org/10.1186/s12968-016-0237-2 CrossRefPubMedPubMedCentralGoogle Scholar
  40. 40.
    Mittl RL Jr, Yousem DM (1994) Frequency of unexplained meningeal enhancement in the brain after lumbar puncture. AJNR Am J Neuroradiol 15:633–638Google Scholar

Copyright information

© European Society of Radiology 2019

Authors and Affiliations

  • Nora Navina Sommer
    • 1
    Email author
  • Romina Pons Lucas
    • 1
  • Eva Coppenrath
    • 1
  • Hendrik Kooijman
    • 2
  • Franziska Galiè
    • 1
  • Nina Hesse
    • 1
  • Wieland H. Sommer
    • 1
  • Karla M. Treitl
    • 1
    • 3
  • Tobias Saam
    • 4
  • Matthias F. Froelich
    • 5
  1. 1.Department of RadiologyLudwig-Maximilians-University HospitalMunichGermany
  2. 2.Philips HealthcareHamburgGermany
  3. 3.German Center for Cardiovascular Disease Research (DZHK e. V.)MunichGermany
  4. 4.Radiologisches Zentrum RosenheimRosenheimGermany
  5. 5.Institute of Clinical Radiology and Nuclear MedicineUniversity Medical Center MannheimMannheimGermany

Personalised recommendations