Skip to main content

Advertisement

Log in

Can we differentiate HIV-associated obliterative portopathy from liver cirrhosis using MRI?

  • Hepatobiliary-Pancreas
  • Published:
European Radiology Aims and scope Submit manuscript

Abstract

Aim

To describe the magnetic resonance imaging (MRI) features of HIV-associated obliterative portopathy (HIV-OP) and determine the most indicative appearance of this condition on MRI by using a retrospective case-control study.

Methods

MRI examinations of 24 patients with HIV-OP (16 men, 8 women; mean age = 48 ± 6.6 [SD] years; age range, 35–71 years) were analyzed by two blinded observers and compared with those obtained in 18 HIV-infected patients with hepatic cirrhosis (14 men, 4 women; mean age = 51 ± 3.4 [SD] years; age range, 35–60 years). Images were qualitatively and quantitatively analyzed with respect to imaging presentation. Comparisons were performed using uni- and multivariate analyses.

Results

Regular liver contours had the highest accuracy for the diagnosis of HIV-OP (83%, 35 of 42; 95% confidence interval [CI], 69–93%) and was the most discriminating independent variable for the diagnosis of HIV-OP (odds ratio, 51; 95%CI, 4.96–1272%) (p < 0.0001). At multivariate analysis, the width of segment 4 in millimeters (OR = 1.23 [95%CI, 1.05–1.44%]; p = 0.011) and the presence of regular liver contours (OR = 7.69 [95%CI, 1.48–39.92%]; p = 0.015) were the variables independently associated with the diagnosis of HIV-OP.

Conclusions

Regular liver contours are the most discriminating independent variable for the diagnosis of HIV-OP but have limited accuracy. Familiarity with this finding may help differentiate HIV-OP from cirrhosis in HIV-infected patients.

Key Points

• Regular liver contour is the most discriminating independent variable for the diagnosis of HIV-OP (odds ratio = 51) with 83% accuracy.

• At multivariate analysis, the width of segment 4 in millimeters and the presence of regular liver contours are the variables independently associated with the diagnosis of HIV-OP.

• MRI helps diagnose HIV-OP in the presence of several categorical findings, which are more frequently observed in HIV-OP patients than in HIV patients with cirrhosis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Abbreviations

3D VIBE:

Three-dimensional volumetric interpolated breath-hold gradient-echo

AUC:

Area under the curve

CI:

Confidence interval

CL/RL:

Caudate-to-right lobe ratio

CT:

Computed tomography

FNH:

Focal nodular hyperplasia

HASTE:

T2-weighted half-Fourier acquisition single-shot turbo spin-echo

HIV:

Human immunodeficiency virus

MRI:

Magnetic resonance imaging

OP:

Obliterative portopathy

PACS:

Picture archiving and communication system

ROC:

Receiving operative curve

SD:

Standard deviation

SI:

Splenic index

TSE :

Turbo spin-echo

References

  1. Khanna R, Sarin SK (2014) Non-cirrhotic portal hypertension - diagnosis and management. J Hepatol 60:421–441

    PubMed  Google Scholar 

  2. Rajesh S, Mukund A, Sureka B, Bansal K, Ronot M, Arora A (2018) Non-cirrhotic portal hypertension: an imaging review. Abdom Radiol 43:1991–2010

    CAS  Google Scholar 

  3. Krasinskas AM, Eghtesad B, Kamath PS, Demetris AJ, Abraham SC (2005) Liver transplantation for severe intrahepatic noncirrhotic portal hypertension. Liver Transpl 11:627–634

    PubMed  Google Scholar 

  4. Isabel Fiel M, Thung SN, Hytiroglou P, Emre S, Schiano TD (2007) Liver failure and need for liver transplantation in patients with advanced hepatoportal sclerosis. Am J Surg Pathol 31:607–614

    CAS  PubMed  Google Scholar 

  5. Nakanuma Y, Tsuneyama K, Ohbu M, Katayanagi K (2001) Pathology and pathogenesis of idiopathic portal hypertension with an emphasis on the liver. Pathol Res Pract 197:65–76

    CAS  PubMed  Google Scholar 

  6. Hillaire S, Bonte E, Denninger MH et al (2002) Idiopathic non-cirrhotic intrahepatic portal hypertension in the west: a re-evaluation in 28 patients. Gut 51:275–280

    CAS  PubMed  PubMed Central  Google Scholar 

  7. Vispo E, Morello J, Rodriguez-Novoa S, Soriano V (2011) Noncirrhotic portal hypertension in HIV infection. Curr Opin Infect Dis 24:12–18

    PubMed  Google Scholar 

  8. Krishnan P, Fiel MI, Rosenkrantz AB et al (2012) Hepatoportal sclerosis: CT and MRI appearance with histopathologic correlation. AJR Am J Roentgenol 198:370–376

    PubMed  Google Scholar 

  9. Wanless IR (1990) Micronodular transformation (nodular regenerative hyperplasia) of the liver: a report of 64 cases among 2,500 autopsies and a new classification of benign hepatocellular nodules. Hepatology 11:787797

    Google Scholar 

  10. Mallet V, Blanchard P, Verkarre V et al (2007) Nodular regenerative hyperplasia is a new cause of chronic liver disease in HIV-infected patients. AIDS 21:187–192

    PubMed  Google Scholar 

  11. Mallet VO, Varthaman A, Lasne D et al (2009) Acquired protein S deficiency leads to obliterative portal venopathy and to compensatory nodular regenerative hyperplasia in HIV-infected patients. AIDS 23:1511–1518

    CAS  PubMed  Google Scholar 

  12. Solis-Herruzo JA, Vidal JV, Colina F, Santalla F, Castellano G (1986) Nodular regenerative hyperplasia of the liver associated with the toxic oil syndrome: report of five cases. Hepatology 6:687–693

    CAS  PubMed  Google Scholar 

  13. Seiderer J, Zech CJ, Reinisch W et al (2005) A multicenter assessment of liver toxicity by MRI and biopsy in IBD patients on 6-thioguanine. J Hepatol 43:303–309

    CAS  PubMed  Google Scholar 

  14. Bajaj JS, Bhattacharjee J, Sarin SK (2001) Coagulation profile and platelet function in patients with extrahepatic portal vein obstruction and non-cirrhotic portal fibrosis. J Gastroenterol Hepatol 16:641–646

    CAS  PubMed  Google Scholar 

  15. Maida I, Núñez M, Ríos MJ et al (2006) Severe liver disease associated with prolonged exposure to antiretroviral drugs. J Acquir Immune Defic Syndr 42:177–182

    CAS  PubMed  Google Scholar 

  16. Dinh MH, Stosor V, Rao SM, Miller FH, Green RM (2009) Cryptogenic liver disease in HIV-seropositive men. HIV Med 10:447–453

    CAS  PubMed  Google Scholar 

  17. Mallet VO, Vallet-Pichard A, Pol S (2009) Human immunodeficiency virus-associated obliterative portopathy underlies unexplained aminotransferase elevations under antiretrovirals. Hepatology 50:660

    PubMed  Google Scholar 

  18. Mallet VO, Sultanik PS, Vallet-Pichard A, Pol S (2010) HIV-associated obliterative portopathy (HIV-OP) underlies cryptogenic liver disease in HIV-seropositive patients. HIV Med 11:540–541

    CAS  PubMed  Google Scholar 

  19. Schouten JN, Van der Ende ME, Koëter T et al (2012) Risk factors and outcome of HIV-associated idiopathic noncirrhotic portal hypertension. Aliment Pharmacol Ther 36:875–885

    CAS  PubMed  Google Scholar 

  20. Saifee S, Joelson D, Braude J et al (2008) Noncirrhotic portal hypertension in patients with human immunodeficiency virus-1 infection. Clin Gastroenterol Hepatol 6:1167–1169

    CAS  PubMed  Google Scholar 

  21. Wanless IR, Peterson P, Das A, Boitnott JK, Moore GW, Bernier V (1990) Hepatic vascular disease and portal hypertension in polycythemia vera and agnogenic myeloid metaplasia: a clinicopathological study of 145 patients examined at autopsy. Hepatology 12:1166–1174

    CAS  PubMed  Google Scholar 

  22. Wanless IR, Godwin TA, Allen F, Feder A (1980) Nodular regenerative hyperplasia of the liver in hematologic disorders: a possible response to obliterative portal venopathy. A morphometric study of nine cases with an hypothesis on the pathogenesis. Medicine (Baltimore) 59:36779

    Google Scholar 

  23. Glatard AS, Hillaire S, d’Assignies G et al (2012) Obliterative portal venopathy: findings at CT imaging. Radiology 263:741–750

    PubMed  Google Scholar 

  24. Laharie D, Vergniol J, Bioulac-Sage P et al (2010) Usefulness of noninvasive tests in nodular regenerative hyperplasia of the liver. Eur J Gastroenterol Hepatol 22:487–493

    PubMed  Google Scholar 

  25. Zech CJ, Seiderer J, Reinisch W et al (2007) Thioguanin-induced nodular regenerative hyperplasia of the liver-ROC analysis of different MR techniques. Eur Radiol 17:1898–1905

    PubMed  Google Scholar 

  26. Arora A, Sarin SK (2015) Multimodality imaging of obliterative portal venopathy: what every radiologist should know. Br J Radiol 88:20140653

    CAS  PubMed  PubMed Central  Google Scholar 

  27. Mikkelsen WP, Edmondson HA, Peters RL, Redeker AG, Reynolds TB (1965) Extra- and intrahepatic portal hypertension without cirrhosis (hepatoportal sclerosis). Ann Surg 162:602–620

    CAS  PubMed  PubMed Central  Google Scholar 

  28. Kirchgesner T, Perlepe V, Michoux N, Larbi A, Vande Berg B (2018) Fat suppression at three-dimensional T1-weighted MR imaging of the hands: Dixon method versus CHESS technique. Diagn Interv Imaging 99:23–28

    CAS  PubMed  Google Scholar 

  29. Soyer P, Sirol M, Dohan A et al (2012) Hepatic height on coronal computed tomography images predicts total liver volume in European adults without liver disease. Dig Dis Sci 57:1692–1697

    PubMed  Google Scholar 

  30. Lafortune M, Matricardi L, Denys A, Favret M, Déry R, Pomier-Layrargues G (1998) Segment 4 (the quadrate lobe): a barometer of cirrhotic liver disease at US. Radiology 206:157–160

    CAS  PubMed  Google Scholar 

  31. Prassopoulos P, Daskalogiannaki M, Raissaki M, Hatjidakis A, Gourtsoyiannis N (1991) Determination of normal splenic volume on computed tomography in relation to age, gender and body habitus. Eur Radiol 7:246–248

    Google Scholar 

  32. Awaya H, Mitchell DG, Kamishima T, Holland G, Ito K, Matsumoto T (2002) Cirrhosis: modified caudate-right lobe ratio. Radiology 224:769–774

    PubMed  Google Scholar 

  33. Weinreb J, Kumari S, Phillips G, Pochaczevsky R (1982) Portal vein measurements by real-time sonography. AJR Am J Roentgenol 139:497–499

    CAS  PubMed  Google Scholar 

  34. Moriyasu F, Ban N, Nishida O et al (1986) Clinical application of an ultrasonic duplex system in the quantitative measurement of portal blood flow. J Clin Ultrasound 14:579–588

    CAS  PubMed  Google Scholar 

  35. Brancatelli G, Federle MP, Ambrosini R et al (2007) Cirrhosis: CT and MR imaging evaluation. Eur J Radiol 61:57–69

    PubMed  Google Scholar 

  36. Tonan T, Fujimoto K, Qayyum A (2010) Chronic hepatitis and cirrhosis on MR imaging. Magn Reson Imaging Clin N Am 18:383–402

    PubMed  Google Scholar 

  37. Ito K, Mitchell DG, Gabata T, Hussain SM (1999) Expanded gallbladder fossa: simple MR imaging sign of cirrhosis. Radiology 211:723–726

    CAS  PubMed  Google Scholar 

  38. Ito K, Mitchell DG, Kim MJ, Awaya H, Koike S, Matsunaga N (2003) Right posterior hepatic notch sign: a simple diagnostic MR finding of cirrhosis. J Magn Reson Imaging 18:561–566

    PubMed  Google Scholar 

  39. Rofsky NM, Weinreb JC, Ambrosino MM, Safir J, Krinsky G (1996) Comparison between in-phase and opposed-phase T1-weighted breath-hold FLASH sequences for hepatic imaging. J Comput Assist Tomogr 20:230–235

    CAS  PubMed  Google Scholar 

  40. Leiber LM, Boursier J, Michalak S et al (2015) MRI versus histological methods for time course monitoring of steatosis amount in a murine model of NAFLD. Diagn Interv Imaging 96:915–922

    PubMed  Google Scholar 

  41. Soyer P, Dufresne AC, Somveille E, Scherrer A (1996) Focal nodular hyperplasia of the liver: assessment of hemodynamic and angioarchitectural patterns with gadolinium chelate-enhanced 3D spoiled gradient-recalled MRI and maximum intensity projection reformatted images. J Comput Assist Tomogr 20:898–904

    CAS  PubMed  Google Scholar 

  42. Barral M, Sirol M, Placé V et al (2012) Hepatic and pancreatic involvement in hereditary hemorrhagic telangiectasia: quantitative and qualitative evaluation with 64-section CT in asymptomatic adult patients. Eur Radiol 22:161–170

    PubMed  Google Scholar 

  43. Ravard G, Soyer P, Boudiaf M et al (2004) Hepatic involvement in hereditary hemorrhagic telangiectasia: helical computed tomography features in 24 consecutive patients. J Comput Assist Tomogr 28:488–495

    PubMed  Google Scholar 

  44. Naganuma H, Ishida H, Niizawa M, Igarashi K, Shioya T, Masamune O (1995) Hepatic involvement in Osler-Weber-Rendu disease: findings on pulsed and color Doppler sonography. AJR Am J Roentgenol 165:1421–1425

    CAS  PubMed  Google Scholar 

  45. Waguri N, Suda T, Kamura T, Aoyagi Y (2002) Heterogeneous hepatic enhancement on CT angiography in idiopathic portal hypertension. Liver 22:276–280

    PubMed  Google Scholar 

  46. Yoshida M, Nakaura T, Inoue T et al (2018) Magnetic resonance cholangiopancreatography with GRASE sequence at 3.0T: does it improve image quality and acquisition time as compared with 3D TSE? Eur Radiol 28:2436–2443

    PubMed  Google Scholar 

  47. Nam JG, Lee JM, Kang HJ et al (2018) GRASE revisited: breath-hold three-dimensional (3D) magnetic resonance cholangiopancreatography using a gradient and spin echo (GRASE) technique at 3T. Eur Radiol 28:3721–3728

    PubMed  Google Scholar 

  48. Hocquelet A, Frulio N, Gallo G et al (2018) Point-shear wave elastography predicts liver hypertrophy after portal vein embolization and postoperative liver failure. Diagn Interv Imaging 99:371–379

    CAS  PubMed  Google Scholar 

Download references

Funding

This research received no financial support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Philippe Soyer.

Ethics declarations

Guarantor

The scientific guarantor of this publication is Philippe Soyer.

Conflict of interest

The authors have no conflicts of interest to disclose regarding this study.

Statistics and biometry

No complex statistical methods were necessary for this paper.

Informed consent

Written informed consent was waived by the Institutional Review Board.

Ethical approval

Institutional Review Board approval was obtained.

Methodology

• retrospective

• diagnostic study

• performed at one institution

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

ESM 1

(DOC 52 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chouraqui, E., Leguilloux, L., Dohan, A. et al. Can we differentiate HIV-associated obliterative portopathy from liver cirrhosis using MRI?. Eur Radiol 30, 213–223 (2020). https://doi.org/10.1007/s00330-019-06391-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00330-019-06391-6

Keywords

Navigation