Advertisement

European Radiology

, Volume 30, Issue 2, pp 1113–1126 | Cite as

Value of CT to detect radiographically occult injuries of the proximal femur in elderly patients after low-energy trauma: determination of non-inferiority margins of CT in comparison with MRI

  • Solenne J. Lanotte
  • Ahmed Larbi
  • Nicolas Michoux
  • Marie-Pierre Baron
  • Aymeric Hamard
  • Charbel Mourad
  • Jacques Malghem
  • Catherine Cyteval
  • Bruno C. Vande BergEmail author
Emergency Radiology
  • 62 Downloads

Abstract

Purpose

To determine the margins of non-inferiority of the sensitivity of CT and the sample size needed to test the non-inferiority of CT in comparison with MRI.

Materials and methods

During a 2-year period, elderly patients with suspected radiographically occult post-traumatic bone injuries were investigated by CT and MRI in two institutions. Four radiologists analyzed separately the CT and MRI examinations to detect post-traumatic femoral injuries. Their sensitivities at CT (SeCT) and MRI (SeMRI) were calculated with the reference being a best valuable comparator (consensus reading of the MRI and clinical follow-up). ROC analysis followed by an exact test (Newcombe’s approach) was performed to assess the 95% confidence interval (CI) for the difference SeCT–SeMRI for each reader. A sample size calculation was performed based on our observed results by using a one-sided McNemar’s test.

Results

Twenty-nine out of 102 study participants had a post-traumatic femoral injury. SeCT ranged between 83 and 93% and SeMRI ranged between 97 and 100%. The 95% CIs for (SeCT–SeMRI) were [− 5.3%, + 0.8%], (pR1 = 0.1250), [− 4.5%; + 1.2%] (pR2 = 0.2188), [− 3.4%; + 1.1%] (pR3 = 0.2500) to [− 3.8%; + 1.6%] (pR4 = 0.3750) according to readers, with a lowest limit for 95% CIs superior to a non-inferiority margin of (− 6%) for all readers. A population of 440 patients should be analyzed to test the non-inferiority of CT in comparison with MRI.

Conclusion

CT and MRI are sensitive for the detection of radiographically occult femoral fractures in elderly patients after low-energy trauma. The choice between both these modalities is a compromise between the most available and the most sensitive technique.

Key Points

The sensitivity of four separate readers to detect radiographically occult post-traumatic femoral injuries in elderly patients after low-energy trauma ranged between 83 and 93% at CT and between 97 and 100% at MRI according to a best valuable comparator including MRI and clinical follow-up.

CT is a valuable alternative method to MRI for the detection of post-traumatic femoral injuries in elderlies after low-energy trauma if a 6% loss in sensitivity can be accepted in comparison with MRI.

The choice between CT and MRI is a compromise between the most available and the most sensitive technique.

Keywords

Hip fractures Elderly patients Computed Tomography Magnetic resonance imaging 

Abbreviations

AUC

Area under the curve

CI

Confidence interval

CT

Computed tomography

MRI

Magnetic resonance imaging

NPV

Negative predictive value

PACS

Picture archiving and communication systems

PPV

Positive predictive value

ROC

Receiver operating characteristic

SD

Standard deviation

Se

Sensitivity

SE

Spin echo

Sp

Specificity

STIR

Short tau inversion recovery

Notes

Funding information

The authors state that this work has not received any funding.

Compliance with ethical standards

Guarantor

The scientific guarantor of this publication is B. Vande Berg.

Conflict of interest

The authors of this manuscript declare no relationships with any companies whose products or services may be related to the subject matter of the article.

Statistics and biometry

One of the authors (N Michoux) has significant statistical expertise.

Informed consent

Written informed consent was obtained from all subjects (patients) in this study.

Ethical approval

Institutional Review Board approval was obtained from the two participating institutions.

Methodology

• Prospective

• Diagnostic or prognostic study

• Multicenter study

References

  1. 1.
    Gullberg B, Johnell O, Kanis JA (1997) World-wide projections for hip fracture. Osteoporos Int 7:407–413CrossRefPubMedPubMedCentralGoogle Scholar
  2. 2.
    Ensrud KE (2013) Epidemiology of fracture risk with advancing age. J Gerontol A Biol Sci Med Sci 68:1236–1242CrossRefPubMedPubMedCentralGoogle Scholar
  3. 3.
    Cooper C, Campion G, Melton LJ 3rd (1992) Hip fractures in the elderly: a world-wide projection. Osteoporos Int 2:285–289CrossRefPubMedPubMedCentralGoogle Scholar
  4. 4.
    Zuckerman JD, Skovron ML, Koval KJ, Aharonoff G, Frankel VH (1995) Postoperative complications and mortality associated with operative delay in older patients who have a fracture of the hip. J Bone Joint Surg Am 77:1551–1556CrossRefPubMedPubMedCentralGoogle Scholar
  5. 5.
    Ward RJ, Weissman BN, Kransdorf MJ et al (2014) ACR appropriateness criteria acute hip pain-suspected fracture. J Am Coll Radiol 11:114–120CrossRefPubMedPubMedCentralGoogle Scholar
  6. 6.
    Parker MJ (1992) Missed hip fractures. Arch Emerg Med 9:23–27CrossRefPubMedPubMedCentralGoogle Scholar
  7. 7.
    Khan SK, Kalra S, Khanna A, Thiruvengada MM, Parker MJ (2009) Timing of surgery for hip fractures: a systematic review of 52 published studies involving 291,413 patients. Injury 40:692–697CrossRefPubMedPubMedCentralGoogle Scholar
  8. 8.
    Deutsch AL, Mink JH, Waxman AD (1989) Occult fractures of the proximal femur: MR imaging. Radiology 170:113–116CrossRefPubMedPubMedCentralGoogle Scholar
  9. 9.
    Rizzo PF, Gould ES, Lyden JP, Asnis SE (1993) Diagnosis of occult fractures about the hip. Magnetic resonance imaging compared with bone-scanning. J Bone Joint Surg Am 75:395–401CrossRefPubMedPubMedCentralGoogle Scholar
  10. 10.
    Bogost GA, Lizerbram EK, Crues JV 3rd (1995) MR imaging in evaluation of suspected hip fracture: frequency of unsuspected bone and soft-tissue injury. Radiology 197:263–267CrossRefPubMedPubMedCentralGoogle Scholar
  11. 11.
    Lubovsky O, Liebergall M, Mattan Y, Weil Y, Mosheiff R (2005) Early diagnosis of occult hip fractures MRI versus CT scan. Injury 36:788–792CrossRefPubMedPubMedCentralGoogle Scholar
  12. 12.
    Dominguez S, Liu P, Roberts C, Mandell M, Richman PB (2005) Prevalence of traumatic hip and pelvic fractures in patients with suspected hip fracture and negative initial standard radiographs--a study of emergency department patients. Acad Emerg Med 12:366–369PubMedPubMedCentralGoogle Scholar
  13. 13.
    Cabarrus MC, Ambekar A, Lu Y, Link TM (2008) MRI and CT of insufficiency fractures of the pelvis and the proximal femur. AJR Am J Roentgenol 191:995–1001CrossRefPubMedPubMedCentralGoogle Scholar
  14. 14.
    Hakkarinen DK, Banh KV, Hendey GW (2012) Magnetic resonance imaging identifies occult hip fractures missed by 64-slice computed tomography. J Emerg Med 43:303–307CrossRefPubMedPubMedCentralGoogle Scholar
  15. 15.
    Jordan R, Dickenson E, Westacott D, Baraza N, Srinivasan K (2013) A vast increase in the use of CT scans for investigating occult hip fractures. Eur J Radiol 82:e356–e359CrossRefPubMedPubMedCentralGoogle Scholar
  16. 16.
    Heikal S, Riou P, Jones L (2014) The use of computed tomography in identifying radiologically occult hip fractures in the elderly. Ann R Coll Surg Engl 96:234–237CrossRefPubMedPubMedCentralGoogle Scholar
  17. 17.
    Haubro M, Stougaard C, Torfing T, Overgaard S (2015) Sensitivity and specificity of CT- and MRI-scanning in evaluation of occult fracture of the proximal femur. Injury 46:1557–1561CrossRefGoogle Scholar
  18. 18.
    Rehman H, Clement RG, Perks F, White TO (2016) Imaging of occult hip fractures: CT or MRI? Injury 47:1297–1301CrossRefGoogle Scholar
  19. 19.
    Sadozai Z, Davies R, Warner J (2016) The sensitivity of ct scans in diagnosing occult femoral neck fractures. Injury 47:2769–2771CrossRefGoogle Scholar
  20. 20.
    Thomas RW, Williams HL, Carpenter EC, Lyons K (2016) The validity of investigating occult hip fractures using multidetector CT. Br J Radiol 89:20150250CrossRefPubMedPubMedCentralGoogle Scholar
  21. 21.
    Dunker D, Collin D, Göthlin JH, Geijer M (2012) High clinical utility of computed tomography compared to radiography in elderly patients with occult hip fracture after low-energy trauma. Emerg Radiol 19:135–139CrossRefPubMedPubMedCentralGoogle Scholar
  22. 22.
    National Clinical Guideline Centre (UK) (2011) The management of hip fracture in adults. NICEClinical Guidelines, No. 124Google Scholar
  23. 23.
    Collin D, Geijer M, Göthlin JH (2016) Computed tomography compared to magnetic resonance imaging in occult or suspect hip fractures. A retrospective study in 44 patients. Eur Radiol 26:3932–3938CrossRefPubMedPubMedCentralGoogle Scholar
  24. 24.
    Kellock TT, Nicolaou S, Kim SSY et al (2017) Detection of bone marrow edema in nondisplaced hip fractures: utility of a virtual noncalcium dual-energy CT application. Radiology 284:922CrossRefPubMedPubMedCentralGoogle Scholar
  25. 25.
    Buderer NM (1996) Statistical methodology: I. incorporating the prevalence of disease into the sample size calculation for sensitivity and specificity. Acad Emerg Med 3:895–900CrossRefPubMedPubMedCentralGoogle Scholar
  26. 26.
    Newcombe RG (1998) Improved confidence intervals for the difference between binomial proportions based on paired data. Stat Med 17:2635–2650CrossRefPubMedPubMedCentralGoogle Scholar
  27. 27.
    Alam A, Willett K, Ostlere S (2005) The MRI diagnosis and management of incomplete intertrochanteric fractures of the femur. J Bone Joint Surg Br 87:1253–1255CrossRefPubMedPubMedCentralGoogle Scholar
  28. 28.
    Chana R, Noorani A, Ashwood N, Chatterji U, Healy J, Baird P (2006) The role of MRI in the diagnosis of proximal femoral fractures in the elderly. Injury 37:185–189CrossRefPubMedPubMedCentralGoogle Scholar
  29. 29.
    Frihagen F, Nordsletten L, Tariq R, Madsen JE (2005) MRI diagnosis of occult hip fractures. Acta Orthop 76:524–530CrossRefPubMedPubMedCentralGoogle Scholar
  30. 30.
    Pejic A, Hansson S, Rogmark C (2017) Magnetic resonance imaging for verifying hip fracture diagnosis why, when and how? Injury 48:687–691CrossRefPubMedPubMedCentralGoogle Scholar
  31. 31.
    Ahn S, Park SH, Lee KH (2013) How to demonstrate similarity by using noninferiority and equivalence statistical testing in radiology research. Radiology 267:328–338CrossRefPubMedPubMedCentralGoogle Scholar
  32. 32.
    Haramati N, Staron RB, Barax C, Feldman F (1994) Magnetic resonance imaging of occult fractures of the proximal femur. Skeletal Radiol 23:19–22PubMedPubMedCentralGoogle Scholar
  33. 33.
    Oka M, Monu JU (2004) Prevalence and patterns of occult hip fractures and mimics revealed by MRI. AJR Am J Roentgenol 182:283–288CrossRefPubMedPubMedCentralGoogle Scholar
  34. 34.
    Pandey R, McNally E, Ali A, Bulstrode C (1998) The role of MRI in the diagnosis of occult hip fractures. Injury 29:61–63CrossRefPubMedPubMedCentralGoogle Scholar
  35. 35.
    Quinn SF, McCarthy JL (1993) Prospective evaluation of patients with suspected hip fracture and indeterminate radiographs: use of T1-weighted MR images. Radiology 187:469–471CrossRefPubMedPubMedCentralGoogle Scholar
  36. 36.
    Kirby MW, Spritzer C (2010) Radiographic detection of hip and pelvic fractures in the emergency department. AJR Am J Roentgenol 194:1054–1060CrossRefPubMedPubMedCentralGoogle Scholar
  37. 37.
    Geijer M, Dunker D, Collin D, Göthlin JH (2012) Bone bruise, lipohemarthrosis, and joint effusion in CT of non-displaced hip fracture. Acta Radiol 53:197–202CrossRefPubMedPubMedCentralGoogle Scholar
  38. 38.
    Reddy T, McLaughlin PD, Mallinson PI et al (2015) Detection of occult, undisplaced hip fractures with a dual-energy CT algorithm targeted to detection of bone marrow edema. Emerg Radiol 22:25–29CrossRefPubMedPubMedCentralGoogle Scholar
  39. 39.
    Pathria MN, Chung CB, Resnick DL (2016) Acute and stress-related injuries of bone and cartilage: pertinent anatomy, basic biomechanics, and imaging perspective. Radiology 280:21–38CrossRefPubMedPubMedCentralGoogle Scholar
  40. 40.
    Chang EY, Bae WC, Shao H et al (2015) Ultrashort echo time magnetization transfer (UTE-MT) imaging of cortical bone. NMR Biomed 28:873–880CrossRefPubMedPubMedCentralGoogle Scholar
  41. 41.
    Jerban S, Ma Y, Nazaran A et al (2018) Detecting stress injury (fatigue fracture) in fibular cortical bone using quantitative ultrashort echo time-magnetization transfer (UTE-MT): an ex vivo study. NMR Biomed 31:e3994CrossRefPubMedPubMedCentralGoogle Scholar
  42. 42.
    Collin D, Dunker D, Göthlin JH, Geijer M (2011) Observer variation for radiography, computed tomography, and magnetic resonance imaging of occult hip fractures. Acta Radiol 52:871–874CrossRefPubMedPubMedCentralGoogle Scholar
  43. 43.
    Karch A, Koch A, Zapf A, Zerr I, Karch A (2016) Partial verification bias and incorporation bias affected accuracy estimates of diagnostic studies for biomarkers that were part of an existing composite gold standard. J Clin Epidemiol 78:73–82CrossRefPubMedPubMedCentralGoogle Scholar

Copyright information

© European Society of Radiology 2019

Authors and Affiliations

  • Solenne J. Lanotte
    • 1
  • Ahmed Larbi
    • 2
  • Nicolas Michoux
    • 1
  • Marie-Pierre Baron
    • 2
  • Aymeric Hamard
    • 2
  • Charbel Mourad
    • 1
  • Jacques Malghem
    • 1
  • Catherine Cyteval
    • 2
  • Bruno C. Vande Berg
    • 1
    Email author
  1. 1.Department of Radiology, Institut de Recherche expérimentale et Clinique (IREC), Cliniques Universitaires Saint LucUniversité Catholique de Louvain (UCLouvain)BrusselsBelgium
  2. 2.Department of Radiology, Faculté de Médecine de Montpellier/NîmesHôpital LapeyronieMontpellierFrance

Personalised recommendations