Prevalence and prognostic value of late gadolinium enhancement on CMR in aortic stenosis: meta-analysis

  • Giedre BalciunaiteEmail author
  • Viktor Skorniakov
  • Arnas Rimkus
  • Tomas Zaremba
  • Darius Palionis
  • Nomeda Valeviciene
  • Audrius Aidietis
  • Pranas Serpytis
  • Kestutis Rucinskas
  • Peter Sogaard
  • Sigita Glaveckaite



The aim of this study was to investigate the prevalence and prognostic value of late gadolinium enhancement (LGE), as assessed by cardiovascular magnetic resonance (CMR) imaging, in patients with aortic stenosis.

Methods and results

A systematic search of PubMed and EMBASE was performed, and observational cohort studies that analysed the prevalence of LGE and its relation to clinical outcomes in patients with aortic stenosis were included. Odds ratios were used to measure an effect of the presence of LGE on both all-cause and cardiovascular mortality. Nineteen studies were retrieved, accounting for 2032 patients (mean age 69.8 years, mean follow-up 2.8 years). We found that LGE is highly prevalent in aortic stenosis, affecting half of all patients (49.6%), with a non-infarct pattern being the most frequent type (63.6%). The estimated extent of focal fibrosis, expressed in % of LV mass, was equal to 3.83 (95% CI [2.14, 5.52], p < 0.0001). The meta-analysis showed that the presence of LGE was associated with increased all-cause (pooled OR [95% CI] = 3.26 [1.72, 6.18], p = 0.0003) and cardiovascular mortality (pooled OR [95% CI] = 2.89 [1.90, 4.38], p < 0.0001).


LGE by CMR is highly prevalent in aortic stenosis patients and exhibits a substantial value in all-cause and cardiovascular mortality prediction. These results suggest a potential role of LGE in aortic stenosis patient risk stratification.

Key Points

• Up to the half of aortic stenosis patients are affected by myocardial focal fibrosis.

• Sixty-four percent of focal fibrosis detected by LGE-CMR is non-infarct type.

• The presence of focal fibrosis triples all-cause and cardiovascular mortality.


Magnetic resonance imaging Aortic stenosis Fibrosis Prognosis Meta-analysis 



Aortic stenosis


Coronary artery disease


Cardiovascular magnetic resonance


Full width half maximum


Late gadolinium enhancement


Left ventricular


Left ventricular ejection fraction


New York Heart Association


Surgical aortic valve replacement


Transcatheter aortic valve implantation



The authors state that this work has not received any funding.

Compliance with ethical standards


The scientific guarantor of this publication is Prof. Peter Sogaard, MD, PhD.

Conflict of interest

The authors state that they have no conflict of interest.

Statistics and biometry

One of the authors has significant statistical expertise—Assoc. Prof. Viktor Skorniakov, PhD.

Informed consent

Written informed consent was not required for this study because only published data were used.

Ethical approval

Institutional Review Board approval was not required for this study because only published data were used.

Study subjects or cohorts overlap

Studies with possibly overlapping data were excluded from the analysis.


• Meta-analysis

Supplementary material

330_2019_6386_MOESM1_ESM.docx (83 kb)
ESM 1 (DOCX 83 kb)


  1. 1.
    Dweck MR, Boon NA, Newby DE (2012) Calcific aortic stenosis: a disease of the valve and the myocardium. J Am Coll Cardiol 60:1854–1863CrossRefGoogle Scholar
  2. 2.
    Carabello BA, Paulus WJ (2009) Aortic stenosis. Lancet 373:956–966CrossRefGoogle Scholar
  3. 3.
    Hein S, Arnon E, Kostin S et al (2003) Progression from compensated hypertrophy to failure in the pressure-overloaded human heart: structural deterioration and compensatory mechanisms. Circulation. 107:984–991CrossRefGoogle Scholar
  4. 4.
    Baumgartner H, Falk V, Bax JJ, Group ESCSD et al (2017) 2017 ESC/EACTS Guidelines for the management of valvular heart disease. Eur Heart J 38:2739–2791CrossRefGoogle Scholar
  5. 5.
    Kusunose K, Goodman A, Parikh R et al (2014) Incremental prognostic value of left ventricular global longitudinal strain in patients with aortic stenosis and preserved ejection fraction. Circ Cardiovasc Imaging 7:938–945CrossRefGoogle Scholar
  6. 6.
    Iles LM, Ellims AH, Llewellyn H et al (2015) Histological validation of cardiac magnetic resonance analysis of regional and diffuse interstitial myocardial fibrosis. Eur Heart J Cardiovasc Imaging 16:14–22CrossRefGoogle Scholar
  7. 7.
    Lehrke S, Lossnitzer D, Schöb M et al (2011) Use of cardiovascular magnetic resonance for risk stratification in chronic heart failure: prognostic value of late gadolinium enhancement in patients with non-ischaemic dilated cardiomyopathy. Heart 97(9):727–732CrossRefGoogle Scholar
  8. 8.
    Green JJ, Berger JS, Kramer CM, Salerno M (2012) Prognostic value of late gadolinium enhancement in clinical outcomes for hypertrophic cardiomyopathy. JACC Cardiovasc Imaging 5(4):370–377CrossRefGoogle Scholar
  9. 9.
    Avanesov M, Münch J, Weinrich J et al (2017) Prediction of the estimated 5-year risk of sudden cardiac death and syncope or non-sustained ventricular tachycardia in patients with hypertrophic cardiomyopathy using late gadolinium enhancement and extracellular volume CMR. Eur Radiol 27(12):5136–5145CrossRefGoogle Scholar
  10. 10.
    Moher D, Liberati A, Tetzlaff J, Altman DG, PRISMA Group (2009) Preferred reporting items for systematic reviews and meta-analyses: the PRISMA statement. BMJ 339:b2535Google Scholar
  11. 11.
    Higgins JPT, Altman DG (2008) Chapter 8: assessing risk of bias in included studies. In: Higgins JPT, Green S (eds) Cochrane handbook for systematic reviews of interventions. Cochrane Collaboration, CopenhagenCrossRefGoogle Scholar
  12. 12.
    Wells GA, Shea B, O’Conell D, et al The Newcastle-Ottawa Scale (NOS) for assessing the quality of nonrandomized studies in meta-analysis. epidemiology/oxford.asp
  13. 13.
    Azevedo CF, Nigri M, Higuchi ML et al (2010) Prognostic significance of myocardial fibrosis quantification by histopathology and magnetic resonance imaging in patients with severe aortic valve disease. J Am Coll Cardiol 56(4):278–287CrossRefGoogle Scholar
  14. 14.
    Dweck MR, Joshi S, Murigu T et al (2011) Midwall fibrosis is an independent predictor of mortality in patients with aortic stenosis. J Am Coll Cardiol 58(12):1271–1279CrossRefGoogle Scholar
  15. 15.
    Barone-Rochette G, Piérard S, De Meester de Ravenstein C et al (2014) Prognostic significance of LGE by CMR in aortic stenosis patients undergoing valve replacement. J Am Coll Cardiol 64(2):144–154CrossRefGoogle Scholar
  16. 16.
    Chin CW, Everett RJ, Kwiecinski J et al (2017) Myocardial fibrosis and cardiac decompensation in aortic stenosis. JACC Cardiovasc Imaging 10(11):1320–1333CrossRefGoogle Scholar
  17. 17.
    Rajesh GN, Thottian JJ, Subramaniam G, Desabandhu V, Sajeev CG, Krishnan MN (2017) Prevalence and prognostic significance of left ventricular myocardial late gadolinium enhancement in severe aortic stenosis. Indian Heart J 69(6):742–750CrossRefGoogle Scholar
  18. 18.
    Musa TA, Treibel TA, Vassiliou VS et al (2018) Myocardial scar and mortality in severe aortic stenosis. Circulation 138(18):1935–1947CrossRefGoogle Scholar
  19. 19.
    R Core Team. R: a language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria. 2018.
  20. 20.
    Viechtbauer W (2010) Conducting meta-analyses in R with the metafor package. J Stat Softw 36(3):1–48 CrossRefGoogle Scholar
  21. 21.
    Veroniki AA, Jackson D, Viechtbauer W et al (2016) Methods to estimate the between-study variance and its uncertainty in meta-analysis. Res Synth Methods 7(1):55–79CrossRefGoogle Scholar
  22. 22.
    Sterne JA, Egger M. Regression methods to detect publication and other bias in meta-analysis. Publication Bias in Meta-Analysis 2006;
  23. 23.
    Debl K, Djavidani B, Buchner S et al (2006) Delayed hyperenhancement in magnetic resonance imaging of left ventricular hypertrophy caused by aortic stenosis and hypertrophic cardiomyopathy: visualisation of focal fibrosis. Heart. 92(10):1447–1451CrossRefGoogle Scholar
  24. 24.
    Mahmod M, Piechnik SK, Levelt E et al (2014) Adenosine stress native T1 mapping in severe aortic stenosis: evidence for a role of the intravascular compartment on myocardial T1 values. J Cardiovasc Magn Reson 16:92CrossRefGoogle Scholar
  25. 25.
    Weidemann F, Herrmann S, Störk S et al (2009) Impact of myocardial fibrosis in patients with symptomatic severe aortic stenosis. Circulation 120(7):577–584CrossRefGoogle Scholar
  26. 26.
    Nassenstein K, Bruder O, Breuckmann F, Erbel R, Barkhausen J, Schlosser T (2009) Prevalence, pattern, and functional impact of late gadolinium enhancement in left ventricular hypertrophy due to aortic valve stenosis. Rofo 181(5):472–476CrossRefGoogle Scholar
  27. 27.
    Kim WK, Rolf A, Liebetrau C et al (2014) Detection of myocardial injury by CMR after transcatheter aortic valve replacement. J Am Coll Cardiol 64(4):349–357CrossRefGoogle Scholar
  28. 28.
    Park J, Chang HJ, Choi JH et al (2014) Late gadolinium enhancement in cardiac MRI in patients with severe aortic stenosis and preserved left ventricular systolic function is related to attenuated improvement of left ventricular geometry and filling pressure after aortic valve replacement. Korean Circ J 44(5):312–319CrossRefGoogle Scholar
  29. 29.
    Hoffmann R, Altiok E, Friedman Z, Becker M, Frick M (2014) Myocardial deformation imaging by two-dimensional speckle-tracking echocardiography in comparison to late gadolinium enhancement cardiac magnetic resonance for analysis of myocardial fibrosis in severe aortic stenosis. Am J Cardiol 114(7):1083–1088CrossRefGoogle Scholar
  30. 30.
    de Meester de Ravenstein C, Bouzin C, Lazam S et al (2015) Histological validation of measurement of diffuse interstitial myocardial fibrosis by myocardial extravascular volume fraction from Modified Look-Locker imaging (MOLLI) T1 mapping at 3 T. J Cardiovasc Magn Reson 17:48CrossRefGoogle Scholar
  31. 31.
    Nucifora G, Tantiongco JP, Crouch G et al (2017) Changes of left ventricular mechanics after trans-catheter aortic valve implantation and surgical aortic valve replacement for severe aortic stenosis: A tissue-tracking cardiac magnetic resonance study. Int J Cardiol 228:184–190CrossRefGoogle Scholar
  32. 32.
    Lee H, Park JB, Yoon YE et al (2018) Noncontrast myocardial T1 mapping by cardiac magnetic resonance predicts outcome in patients with aortic stenosis. JACC Cardiovasc Imaging 11(7):974–983CrossRefGoogle Scholar
  33. 33.
    Carter-Storch R, Møller JE, Christensen NL et al (2017) Postoperative reverse remodeling and symptomatic improvement in normal-flow low-gradient aortic stenosis after aortic valve replacement. Circ Cardiovasc Imaging 10(12):e006580CrossRefGoogle Scholar
  34. 34.
    Singh A, Greenwood JP, Berry C et al (2017) Comparison of exercise testing and CMR measured myocardial perfusion reserve for predicting outcome in asymptomatic aortic stenosis: the PRognostic Importance of MIcrovascular Dysfunction in Aortic Stenosis (PRIMID AS) Study. Eur Heart J 38(16):1222–1229CrossRefGoogle Scholar
  35. 35.
    Buckert D, Cieslik M, Tibi R et al (2018) Longitudinal strain assessed by cardiac magnetic resonance correlates to hemodynamic findings in patients with severe aortic stenosis and predicts positive remodeling after transcatheter aortic valve replacement. Clin Res Cardiol 107(1):20–29CrossRefGoogle Scholar
  36. 36.
    Chen H, Zeng J, Liu D, Yang Q (2018) Prognostic value of late gadolinium enhancement on CMR in patients with severe aortic valve disease: a systematic review and meta-analysis. Clin Radiol:S0009–9260(18)30365–9Google Scholar
  37. 37.
    Fairbairn TA, Steadman CD, Mather AN et al (2013) Assessment of valve haemodynamics, reverse ventricular remodelling and myocardial fibrosis following transcatheter aortic valve implantation compared to surgical aortic valve replacement: a cardiovascular magnetic resonance study. Heart. 99(16):1185–1191CrossRefGoogle Scholar
  38. 38.
    Dweck MR, Joshi S, Murigu T et al (2012) Left ventricular remodeling and hypertrophy in patients with aortic stenosis: insights from cardiovascular magnetic resonance. J Cardiovasc Magn Reson 14:50CrossRefGoogle Scholar
  39. 39.
    Treibel TA, López B, González A et al (2018) Reappraising myocardial fibrosis in severe aortic stenosis: an invasive and non-invasive study in 133 patients. Eur Heart J 39(8):699–709CrossRefGoogle Scholar
  40. 40.
    Kuribayashi T, Roberts WC (1992) Myocardial disarray at junction of ventricular septum and left and right ventricular free walls in hypertrophic cardiomyopathy. Am J Cardiol 70:1333–1340CrossRefGoogle Scholar
  41. 41.
    Chan RH, Maron BJ, Olivotto I et al (2015) Significance of late gadolinium enhancement at right ventricular attachment to ventricular septum in patients with hypertrophic cardiomyopathy. Am J Cardiol 116:436–441CrossRefGoogle Scholar
  42. 42.
    Flett AS, Hasleton J, Cook C et al (2011) Evaluation of techniques for the quantification of myocardial scar of differing etiology using cardiac magnetic resonance. JACC Cardiovasc Imaging 4(2):150–156CrossRefGoogle Scholar
  43. 43.
    Cheng S, Fang M, Cui C et al (2018) LGE-CMR-derived texture features reflect poor prognosis in hypertrophic cardiomyopathy patients with systolic dysfunction: preliminary results. Eur Radiol 28(11):4615–4624CrossRefGoogle Scholar
  44. 44.
    Gibbs T, Villa ADM, Sammut E et al (2018) Quantitative assessment of myocardial scar heterogeneity using cardiovascular magnetic resonance texture analysis to risk stratify patients post-myocardial infarction. Clin Radiol 73(12):1059.e17–1059.e26CrossRefGoogle Scholar
  45. 45.
    Everett RJ, Tastet L, Clavel MA et al (2018) Progression of hypertrophy and myocardial fibrosis in aortic stenosis: a multicenter cardiac magnetic resonance study. Circ Cardiovasc Imaging 11(6):e007451CrossRefGoogle Scholar

Copyright information

© European Society of Radiology 2019

Authors and Affiliations

  • Giedre Balciunaite
    • 1
    Email author
  • Viktor Skorniakov
    • 2
  • Arnas Rimkus
    • 1
  • Tomas Zaremba
    • 1
    • 3
  • Darius Palionis
    • 4
  • Nomeda Valeviciene
    • 4
  • Audrius Aidietis
    • 1
  • Pranas Serpytis
    • 1
  • Kestutis Rucinskas
    • 1
  • Peter Sogaard
    • 1
    • 3
  • Sigita Glaveckaite
    • 1
  1. 1.Clinic of Cardiovascular Diseases, Institute of Clinical MedicineVilnius University Faculty of MedicineVilniusLithuania
  2. 2.Faculty of Mathematics and Informatics, Institute of Applied MathematicsVilnius UniversityVilniusLithuania
  3. 3.Aalborg University HospitalClinical Institute of Aalborg UniversityAalborgDenmark
  4. 4.Department of Radiology, Nuclear Medicine and Medical Physics, Institute of Biomedical SciencesVilnius University Faculty of MedicineVilniusLithuania

Personalised recommendations