Advertisement

European Radiology

, Volume 29, Issue 12, pp 6634–6642 | Cite as

White matter rather than gray matter damage characterizes essential tremor

  • Sara Pietracupa
  • Matteo Bologna
  • Komal Bharti
  • Gabriele Pasqua
  • Silvia Tommasin
  • Francesca Elifani
  • Giulia Paparella
  • Nikolaos Petsas
  • Giovanni Grillea
  • Alfredo Berardelli
  • Patrizia PantanoEmail author
Magnetic Resonance
  • 185 Downloads

Abstract

Objectives

We investigated changes in gray matter (GM) and white matter (WM) in the whole brain, including both cortical and subcortical structures, and their relationship with tremor severity, psychiatric symptoms, and cognitive impairment in patients affected by essential tremor (ET).

Methods

We studied 19 ET patients and 15 healthy subjects (HS). All the subjects underwent a 3-T MRI study based on 3D-T1 and diffusion tensor images. For the GM analysis, cortical thickness was assessed by using the Computational Anatomy Tool, basal ganglia and thalamus volumes by using the FMRIB software library, and cerebellum lobular volumes by using the spatial unbiased atlas template. For the WM assessment, we performed a voxel-wise analysis by means of tract-based spatial statistics. Patients’ tremor severity and psychiatric and cognitive disorders were evaluated by means of standard clinical scales. Neuroimaging data were correlated with clinical scores.

Results

We found significantly smaller right and left thalamic volumes in ET patients than in HS, which correlated with cognitive scores. We did not observe any significant differences either in cortical thickness or in cerebellar lobular volumes between patients and HS. WM abnormalities were detected in most hemisphere bundles, particularly in the corticospinal tract, cerebellar peduncles, and corpus callosum. The WM abnormalities significantly correlated with tremor severity, cognitive profile, and depression.

Conclusion

Our study indicates that ET is characterized by several GM and WM changes of both infra- and supratentorial brain structures. The results may help to better understand mechanisms underlying tremor severity and psychiatric and cognitive impairment in ET.

Key Points

• We performed a comprehensive evaluation of gray and white matter in the same sample of patients with essential tremor using recently developed data analysis methods.

• Essential tremor is characterized by widespread gray and white matter changes in both infra- and supratentorial brain structures. The results may help to better understand motor and non-motor symptoms in patients with essential tremor.

Keywords

Essential tremor Magnetic resonance imaging Gray matter White matter 

Abbreviations

3D-T1

Three dimensional T1-weighted

AD

Axial diffusivity

BAI

Beck Anxiety Inventory

BDI

Beck Depression Inventory

CAT12

Computational Anatomy Tool

CSF

Cerebrospinal fluid

DTI

Diffusion tensor imaging

ET

Essential tremor

FA

Fractional anisotropy

FAB

Frontal Assessment Battery

FIRST

FMRIB’s Integrated Registration and Segmentation Tool

FSL

FMRIB software library

FTM-TRS

Fahn-Tolosa-Marin Tremor Rating Scale

FWE

Family-wise error

GM

Gray matter

HS

Healthy subjects

MD

Mean diffusivity

MoCA

Montreal Cognitive Assessment

MRI

Magnetic resonance imaging

RD

Radial diffusivity

SPM12

Statistic parametric mapping version 12

SUIT

Spatially unbiased infratentorial toolbox

TBSS

Tract-based spatial statistics

TE

Time echo

TIV

Total intracranial volume

TR

Repetition time

VBM

Voxel-based morphometry

WM

White matter

Notes

Funding

The authors state that this work has not received any funding.

Compliance with ethical standards

Guarantor

The scientific guarantor of this publication is Prof Patrizia Pantano.

Conflict of interest

The authors of this manuscript declare no relationships with any companies whose products or services may be related to the subject matter of the article.

Statistics and biometry

No complex statistical methods were necessary for this paper.

Informed consent

Written informed consent was obtained from all subjects (patients) in this study.

Ethical approval

Institutional Review Board approval was obtained.

Methodology

• Case-control study

• Performed at one institution

Supplementary material

330_2019_6267_MOESM1_ESM.docx (43 kb)
ESM 1 (DOCX 43 kb)

References

  1. 1.
    Deuschl G, Petersen I, Lorenz D, Christensen K (2015) Tremor in the elderly: essential and aging-related tremor. Mov Disord 30:1327–1334.  https://doi.org/10.1002/mds.26265 CrossRefPubMedPubMedCentralGoogle Scholar
  2. 2.
    Bhatia KP, Bain P, Bajaj N et al (2018) Consensus Statement on the classification of tremors. from the task force on tremor of the International Parkinson and Movement Disorder Society. Mov Disord 33:75–87.  https://doi.org/10.1002/mds.27121 CrossRefPubMedGoogle Scholar
  3. 3.
    Espay AJ, Lang AE, Erro R et al (2017) Essential pitfalls in “essential” tremor. Mov Disord 32:325–331.  https://doi.org/10.1002/mds.26919 CrossRefPubMedPubMedCentralGoogle Scholar
  4. 4.
    Louis ED (2005) Essential tremor. Lancet Neurol 4:100–110.  https://doi.org/10.1016/S1474-4422(05)00991-9 CrossRefPubMedGoogle Scholar
  5. 5.
    Fabbrini G, Berardelli I, Falla M et al (2012) Psychiatric disorders in patients with essential tremor. Parkinsonism Relat Disord 18:971–973.  https://doi.org/10.1016/j.parkreldis.2012.05.005 CrossRefPubMedGoogle Scholar
  6. 6.
    Puertas-Martín V, Villarejo-Galende A, Fernández-Guinea S et al (2016) A comparison study of cognitive and neuropsychiatric features of essential tremor and Parkinson’s disease. Tremor Other Hyperkinet Mov (N Y) 6:431.  https://doi.org/10.7916/D86H4HRN CrossRefGoogle Scholar
  7. 7.
    Daniels C, Peller M, Wolff S et al (2006) Voxel-based morphometry shows no decreases in cerebellar gray matter volume in essential tremor. Neurology 67:1452–1456.  https://doi.org/10.1212/01.wnl.0000240130.94408.99 CrossRefPubMedGoogle Scholar
  8. 8.
    Lin C-H, Chen C-M, Lu M-K et al (2013) VBM reveals brain volume differences between Parkinson’s disease and essential tremor patients. Front Hum Neurosci 7:247.  https://doi.org/10.3389/fnhum.2013.00247 CrossRefPubMedPubMedCentralGoogle Scholar
  9. 9.
    Benito-León J, Alvarez-Linera J, Hernández-Tamames JA et al (2009) Brain structural changes in essential tremor: voxel-based morphometry at 3-Tesla. J Neurol Sci 287:138–142.  https://doi.org/10.1016/j.jns.2009.08.037 CrossRefPubMedGoogle Scholar
  10. 10.
    Bagepally BS, Bhatt MD, Chandran V et al (2012) Decrease in cerebral and cerebellar gray matter in essential tremor: a voxel-based morphometric analysis under 3T MRI. J Neuroimaging 22:275–278.  https://doi.org/10.1111/j.1552-6569.2011.00598.x CrossRefPubMedGoogle Scholar
  11. 11.
    Cameron E, Dyke JP, Hernandez N et al (2018) Cerebral gray matter volume losses in essential tremor: a case-control study using high resolution tissue probability maps. Parkinsonism Relat Disord 51:85–90.  https://doi.org/10.1016/j.parkreldis.2018.03.008 CrossRefPubMedPubMedCentralGoogle Scholar
  12. 12.
    Quattrone A, Cerasa A, Messina D et al (2008) Essential head tremor is associated with cerebellar vermis atrophy: a volumetric and voxel-based morphometry MR imaging study. AJNR Am J Neuroradiol 29:1692–1697.  https://doi.org/10.3174/ajnr.A1190 CrossRefPubMedGoogle Scholar
  13. 13.
    Cerasa A, Messina D, Nicoletti G et al (2009) Cerebellar atrophy in essential tremor using an automated segmentation method. AJNR Am J Neuroradiol 30:1240–1243.  https://doi.org/10.3174/ajnr.A1544 CrossRefPubMedGoogle Scholar
  14. 14.
    Shin H, Lee D-K, Lee J-M et al (2016) Atrophy of the cerebellar vermis in essential tremor: segmental volumetric MRI analysis. Cerebellum 15:174–181.  https://doi.org/10.1007/s12311-015-0682-8 CrossRefPubMedGoogle Scholar
  15. 15.
    Dyke JP, Cameron E, Hernandez N et al (2017) Gray matter density loss in essential tremor: a lobule by lobule analysis of the cerebellum. Cerebellum Ataxias 4:10.  https://doi.org/10.1186/s40673-017-0069-3 CrossRefPubMedPubMedCentralGoogle Scholar
  16. 16.
    Cao H, Wang R, Luo X et al (2018) A voxel-based magnetic resonance imaging morphometric study of cerebral and cerebellar gray matter in patients under 65 years with essential tremor. Med Sci Monit 24:3127–3135.  https://doi.org/10.12659/MSM.906437 CrossRefPubMedPubMedCentralGoogle Scholar
  17. 17.
    Han Q, Hou Y, Shang H (2018) A voxel-wise meta-analysis of gray matter abnormalities in essential tremor. Front Neurol 9:495.  https://doi.org/10.3389/fneur.2018.00495 CrossRefPubMedPubMedCentralGoogle Scholar
  18. 18.
    Dahnke R, Yotter RA, Gaser C (2013) Cortical thickness and central surface estimation. Neuroimage 65:336–348.  https://doi.org/10.1016/j.neuroimage.2012.09.050 CrossRefPubMedGoogle Scholar
  19. 19.
    Diedrichsen J, Zotow E (2015) Surface-based display of volume-averaged cerebellar imaging data. PLoS One 10:e0133402.  https://doi.org/10.1371/journal.pone.0133402 CrossRefPubMedPubMedCentralGoogle Scholar
  20. 20.
    Shin DH, Han BS, Kim HS, Lee PH (2008) Diffusion tensor imaging in patients with essential tremor. AJNR Am J Neuroradiol 29:151–153.  https://doi.org/10.3174/ajnr.A0744 CrossRefPubMedGoogle Scholar
  21. 21.
    Nicoletti G, Manners D, Novellino F et al (2010) Diffusion tensor MRI changes in cerebellar structures of patients with familial essential tremor. Neurology 74:988–994.  https://doi.org/10.1212/WNL.0b013e3181d5a460 CrossRefPubMedGoogle Scholar
  22. 22.
    Klein JC, Lorenz B, Kang J-S et al (2011) Diffusion tensor imaging of white matter involvement in essential tremor. Hum Brain Mapp 32:896–904.  https://doi.org/10.1002/hbm.21077 CrossRefPubMedGoogle Scholar
  23. 23.
    Saini J, Bagepally BS, Bhatt MD et al (2012) Diffusion tensor imaging: tract based spatial statistics study in essential tremor. Parkinsonism Relat Disord 18:477–482.  https://doi.org/10.1016/j.parkreldis.2012.01.006 CrossRefPubMedGoogle Scholar
  24. 24.
    Bhalsing KS, Kumar KJ, Saini J et al (2015) White matter correlates of cognitive impairment in essential tremor. AJNR Am J Neuroradiol 36:448–453.  https://doi.org/10.3174/ajnr.A4138 CrossRefPubMedGoogle Scholar
  25. 25.
    Benito-León J, Mato-Abad V, Louis ED et al (2017) White matter microstructural changes are related to cognitive dysfunction in essential tremor. Sci Rep 7:2978.  https://doi.org/10.1038/s41598-017-02596-1 CrossRefPubMedPubMedCentralGoogle Scholar
  26. 26.
    Louis ED (2001) Clinical practice. Essential tremor. N Engl J Med 345:887–891.  https://doi.org/10.1056/NEJMcp010928 CrossRefPubMedGoogle Scholar
  27. 27.
    Nasreddine ZS, Phillips NA, Bédirian V et al (2005) The Montreal Cognitive Assessment, MoCA: a brief screening tool for mild cognitive impairment. J Am Geriatr Soc 53:695–699.  https://doi.org/10.1111/j.1532-5415.2005.53221.x CrossRefPubMedGoogle Scholar
  28. 28.
    Dubois B, Slachevsky A, Litvan I, Pillon B (2000) The FAB: a Frontal Assessment Battery at bedside. Neurology 55:1621–1626CrossRefGoogle Scholar
  29. 29.
    Beck AT, Ward CH, Mendelson M et al (1961) An inventory for measuring depression. Arch Gen Psychiatry 4:561–571CrossRefGoogle Scholar
  30. 30.
    Patenaude B, Smith SM, Kennedy DN, Jenkinson M (2011) A bayesian model of shape and appearance for subcortical brain segmentation. Neuroimage 56:907–922.  https://doi.org/10.1016/j.neuroimage.2011.02.046
  31. 31.
    Batista S, Zivadinov R, Hoogs M et al (2012) Basal ganglia, thalamus and neocortical atrophy predicting slowed cognitive processing in multiple sclerosis. J Neurol 259:139–146.  https://doi.org/10.1007/s00415-011-6147-1 CrossRefPubMedGoogle Scholar
  32. 32.
    Diedrichsen J, Verstynen T, Lehman SL, Ivry RB (2005) Cerebellar involvement in anticipating the consequences of self-produced actions during bimanual movements. J Neurophysiol 93:801–812.  https://doi.org/10.1152/jn.00662.2004 CrossRefPubMedGoogle Scholar
  33. 33.
    Smith SM, Jenkinson M, Johansen-Berg H et al (2006) Tract-based spatial statistics: voxelwise analysis of multi-subject diffusion data. Neuroimage 31:1487–1505.  https://doi.org/10.1016/j.neuroimage.2006.02.024 CrossRefPubMedGoogle Scholar
  34. 34.
    Almairac F, Herbet G, Moritz-Gasser S et al (2015) The left inferior fronto-occipital fasciculus subserves language semantics: a multilevel lesion study. Brain Struct Funct 220:1983–1995.  https://doi.org/10.1007/s00429-014-0773-1 CrossRefPubMedGoogle Scholar
  35. 35.
    Helmich RC, Toni I, Deuschl G, Bloem BR (2013) The pathophysiology of essential tremor and Parkinson’s tremor. Curr Neurol Neurosci Rep 13:378.  https://doi.org/10.1007/s11910-013-0378-8 CrossRefPubMedGoogle Scholar
  36. 36.
    Hallett M (2014) Tremor: pathophysiology. Parkinsonism Relat Disord 20(Suppl 1):S118–S122.  https://doi.org/10.1016/S1353-8020(13)70029-4 CrossRefPubMedGoogle Scholar
  37. 37.
    Dale AM, Fischl B, Sereno MI (1999) Cortical surface-based analysis. I. Segmentation and surface reconstruction. Neuroimage 9:179–194.  https://doi.org/10.1006/nimg.1998.0395 CrossRefPubMedPubMedCentralGoogle Scholar
  38. 38.
    Tona F, Petsas N, Sbardella E et al (2014) Multiple sclerosis: altered thalamic resting-state functional connectivity and its effect on cognitive function. Radiology 271:814–821.  https://doi.org/10.1148/radiol.14131688 CrossRefPubMedGoogle Scholar
  39. 39.
    Zhou B, Liu Y, Zhang Z et al (2013) Impaired functional connectivity of the thalamus in Alzheimer’s disease and mild cognitive impairment: a resting-state fMRI study. Curr Alzheimer Res 10:754–766CrossRefGoogle Scholar
  40. 40.
    Paulesu E, Perani D, Fazio F et al (1996) Functional basis of memory impairment in multiple sclerosis: a [18F]FDG PET study. Neuroimage 4:87–96.  https://doi.org/10.1006/nimg.1996.0032 CrossRefPubMedGoogle Scholar
  41. 41.
    Salmond CH, Chatfield DA, Menon DK et al (2005) Cognitive sequelae of head injury: involvement of basal forebrain and associated structures. Brain 128:189–200.  https://doi.org/10.1093/brain/awh352 CrossRefPubMedGoogle Scholar
  42. 42.
    Gooijers J, Chalavi S, Beeckmans K et al (2016) Subcortical volume loss in the thalamus, putamen, and pallidum, induced by traumatic brain injury, is associated with motor performance deficits. Neurorehabil Neural Repair 30:603–614.  https://doi.org/10.1177/1545968315613448 CrossRefPubMedGoogle Scholar
  43. 43.
    Pontillo G, Cocozza S, Lanzillo R et al (2018) Determinants of deep gray matter atrophy in multiple sclerosis: a multimodal MRI study. AJNR Am J Neuroradiol.  https://doi.org/10.3174/ajnr.A5915
  44. 44.
    Louis ED, Faust PL, Vonsattel J-PG et al (2007) Neuropathological changes in essential tremor: 33 cases compared with 21 controls. Brain 130:3297–3307.  https://doi.org/10.1093/brain/awm266 CrossRefPubMedGoogle Scholar
  45. 45.
    Louis ED, Faust PL (2014) Purkinje cell loss in essential tremor. Mov Disord 29:1329–1330.  https://doi.org/10.1002/mds.25965 CrossRefPubMedPubMedCentralGoogle Scholar
  46. 46.
    Rajput AH, Robinson CA, Rajput A (2013) Purkinje cell loss is neither pathological basis nor characteristic of essential tremor. Parkinsonism Relat Disord 19:490–491.  https://doi.org/10.1016/j.parkreldis.2012.11.019 CrossRefPubMedGoogle Scholar
  47. 47.
    Nestrasil I, Svatkova A, Rudser KD et al (2018) White matter measures correlate with essential tremor severity-a pilot diffusion tensor imaging study. Brain Behav 8:e01039.  https://doi.org/10.1002/brb3.1039 CrossRefPubMedPubMedCentralGoogle Scholar
  48. 48.
    Benito-León J, Louis ED, Bermejo-Pareja F, Neurological Disorders in Central Spain (NEDICES) Study Group (2006) Population-based case-control study of cognitive function in essential tremor. Neurology 66:69–74.  https://doi.org/10.1212/01.wnl.0000192393.05850.ec CrossRefPubMedGoogle Scholar

Copyright information

© European Society of Radiology 2019

Authors and Affiliations

  • Sara Pietracupa
    • 1
  • Matteo Bologna
    • 1
    • 2
  • Komal Bharti
    • 2
  • Gabriele Pasqua
    • 1
    • 3
  • Silvia Tommasin
    • 2
  • Francesca Elifani
    • 1
  • Giulia Paparella
    • 1
  • Nikolaos Petsas
    • 1
  • Giovanni Grillea
    • 1
  • Alfredo Berardelli
    • 1
    • 2
  • Patrizia Pantano
    • 1
    • 2
    Email author
  1. 1.IRCCS NeuromedPozzilli (IS)Italy
  2. 2.Department of Human NeurosciencesSapienza University of RomeRomeItaly
  3. 3.Department of Medicine and Health ScienceUniversity of MoliseCampobassoItaly

Personalised recommendations