European Radiology

, Volume 29, Issue 12, pp 6900–6910 | Cite as

Integrated versus separate reading of F-18 FDG-PET/CT and MRI for abdominal malignancies – effect on staging outcomes and diagnostic confidence

  • Lisa A. Min
  • Wouter V. Vogel
  • Max J. Lahaye
  • Monique Maas
  • Maarten L. Donswijk
  • Erik Vegt
  • Miranda Kusters
  • Henry J. Zijlmans
  • Katarzyna Jóźwiak
  • Sander Roberti
  • Regina G. H. Beets-Tan
  • Doenja M. J. LambregtsEmail author



Abdominal cancer patients increasingly undergo multimodality imaging. This study evaluates effects of integrated reading of PET/CT and abdominal MRI on staging outcomes and diagnostic confidence compared to “routine” separate reading.


In total, N = 201 patients who underwent abdominal MRI and whole-body F-18 FDG-PET/CT within 14 days were retrospectively analyzed. Original MRI and PET/CT reports were retrieved and reported findings translated into a 5-point confidence score (1 = definitely benign to 5 = definitely malignant) for 7 standardized regions (primary tumor/regional lymph nodes/distant lymph nodes/liver/lung/bone/peritoneum) per patient. Two-reader teams (radiologist + nuclear medicine physician) then performed integrated reading of the images using the same scoring system.


Integrated reading led to discrepant findings in 59 of 201 (29%) of patients, with potential clinical impact in 25 of 201 (12%). Equivocal scores decreased from 5.7% (PET/CT) and 5.4% (MRI) to 3.2% (p = 0.05 and p = 0.14). Compared to the original PET/CT reports, integrated reading led to increased diagnostic confidence in 8.9% versus decreased confidence in 6.6% (p = 0.26). Compared with the original MRI reports, an increase in confidence occurred in 9.6% versus a decrease in 6.9% (p = 0.18). The effect on diagnostic confidence was most pronounced in lymph nodes (p = 0.08 vs. MRI), cervical cancer (p = 0.03 vs. MRI), and recurrent disease staging (p = 0.06 vs. PET/CT).


Integrated PET/CT+MRI reading alters staging outcomes in a substantial proportion of cases with potential clinical impact in ± 1 out of 9 patients. It can also have a small positive effect on diagnostic confidence, particularly in lymph nodes and cervical cancer, and in post-treatment settings. These findings support further collaboration between radiology and nuclear medicine disciplines.

Key Points

• Increasing numbers of patients undergo multimodality imaging consisting of both MRI and PET/CT for staging of abdominal malignancies.

• Integrated reading of FDG-PET/CT and abdominal MR images by a team, consisting of a radiologist and a nuclear medicine physician, can alter staging outcomes compared to separate reporting of the exams in a substantial proportion of cases and with potential clinical impact in ± 1 out of 9 patients.

• Integrated PET/CT+MRI reading can have a small positive effect on diagnostic confidence.


Positron emission tomography computed tomography Magnetic resonance imaging Multimodal imaging Neoplasms 



Body mass index


Clinical report form


Diffusion-weighted imaging


Fluorodeoxyglucose (or 2-deoxy-2-[18F]fluoroglucose)


Field of view


Kilovolt (or 1 × 103 V)


Milliampere-second (or 1 × 10−3 ampere-second)


Megabecquerel (or 1 × 106 becquerel)


Millicurie (or 1 × 10−3 Ci)


Multidisciplinary team


Magnetic resonance imaging


Positron emission tomography


Positron emission tomography computed tomography (hybrid PET and CT acquisition)


Standardized uptake value



The authors state that this work has not received any funding.

Compliance with ethical standards


The scientific guarantor of this publication is Dr. Doenja Lambregts.

Conflict of interest

The authors of this manuscript declare no relationships with any companies whose products or services may be related to the subject matter of the article.

Statistics and biometry

Two of the authors have significant statistical expertise (KJ and SR).

Informed consent

Written informed consent was waived by the Institutional Review Board.

Ethical approval

Institutional Review Board approval was obtained.


• Retrospective

• Diagnostic or prognostic study

• Performed at one institution

Supplementary material

330_2019_6253_MOESM1_ESM.docx (21 kb)
ESM 1 (DOCX 21 kb)


  1. 1.
    Löwenthal D, Zeile M, Lim WY et al (2011) Detection and characterisation of focal liver lesions in colorectal carcinoma patients: comparison of diffusion-weighted and Gd-EOB-DTPA enhanced MR imaging. Eur Radiol 21:832–840CrossRefPubMedPubMedCentralGoogle Scholar
  2. 2.
    Bozkurt M, Doganay S, Kantarci M et al (2011) Comparison of peritoneal tumor imaging using conventional MR imaging and diffusion-weighted MR imaging with different b values. Eur J Radiol 80:224–228CrossRefPubMedPubMedCentralGoogle Scholar
  3. 3.
    Michielsen K, Dresen R, Vanslembrouck R et al (2017) Diagnostic value of whole body diffusion-weighted MRI compared to computed tomography for pre-operative assessment of patients suspected for ovarian cancer. Eur J Cancer 83:88–98CrossRefPubMedPubMedCentralGoogle Scholar
  4. 4.
    Miccò M, Vargas HA, Burger IA et al (2014) Combined pre-treatment MRI and 18F-FDG PET/CT parameters as prognostic biomarkers in patients with cervical cancer. Eur J Radiol 83:1169–1176CrossRefPubMedPubMedCentralGoogle Scholar
  5. 5.
    Joye I, Debucquoy A, Deroose CM et al (2017) Quantitative imaging outperforms molecular markers when predicting response to chemoradiotherapy for rectal cancer. Radiother Oncol 124:104–109CrossRefPubMedPubMedCentralGoogle Scholar
  6. 6.
    Mongula JE, Bakers FCH, Vöö S et al (2018) Positron emission tomography-magnetic resonance imaging (PET-MRI) for response assessment after radiation therapy of cervical carcinoma: a pilot study. EJNMMI Res 8:1CrossRefPubMedPubMedCentralGoogle Scholar
  7. 7.
    Catalano OA, Rosen BR, Sahani DV et al (2013) Clinical impact of PET/MR imaging in patients with cancer undergoing same-day PET/CT: initial experience in 134 patients--a hypothesis-generating exploratory study. Radiology 269:857–869CrossRefPubMedPubMedCentralGoogle Scholar
  8. 8.
    Sotoudeh H, Sharma A, Fowler KJ, McConathy J, Dehdashti F (2016) Clinical application of PET/MRI in oncology. J Magn Reson Imaging 44:265–276Google Scholar
  9. 9.
    Singnurkar A, Poon R, Metser U (2017) Comparison of 18F-FDG-PET/CT and 18F-FDG-PET/MR imaging in oncology: a systematic review. Ann Nucl Med 31:366–378CrossRefPubMedPubMedCentralGoogle Scholar
  10. 10.
    Brendle C, Schwenzer NF, Rempp H et al (2016) Assessment of metastatic colorectal cancer with hybrid imaging: comparison of reading performance using different combinations of anatomical and functional imaging techniques in PET/MRI and PET/CT in a short case series. Eur J Nucl Med Mol Imaging 43:123–132CrossRefPubMedPubMedCentralGoogle Scholar
  11. 11.
    Beiderwellen K, Grueneisen J, Ruhlmann V et al (2015) [(18)F]FDG PET/MRI vs. PET/CT for whole-body staging in patients with recurrent malignancies of the female pelvis: initial results. Eur J Nucl Med Mol Imaging 42:56–65CrossRefPubMedPubMedCentralGoogle Scholar
  12. 12.
    Grueneisen J, Beiderwellen K, Heusch P et al (2014) Simultaneous positron emission tomography/magnetic resonance imaging for whole-body staging in patients with recurrent gynecological malignancies of the pelvis. Invest Radiol 49:808–815CrossRefPubMedPubMedCentralGoogle Scholar
  13. 13.
    Ruhlmann V, Ruhlmann M, Bellendorf A et al (2016) Hybrid imaging for detection of carcinoma of unknown primary: a preliminary comparison trial of whole-body PET/MRI versus PET/CT. Eur J Radiol 85:1941–1947CrossRefPubMedPubMedCentralGoogle Scholar
  14. 14.
    Drzezga A, Souvatzoglou M, Eiber M et al (2012) First clinical experience with integrated whole-body PET/MR: comparison to PET/CT in patients with oncologic diagnoses. J Nucl Med 53:845–855CrossRefGoogle Scholar
  15. 15.
    Grueneisen J, Schaarschmidt BM, Beiderwellen K et al (2014) Diagnostic value of diffusion-weighted imaging in simultaneous 18F-FDG PET/MR imaging for whole-body staging of women with pelvic malignancies. J Nucl Med 55:1930–1935CrossRefGoogle Scholar
  16. 16.
    Grueneisen J, Schaarschmidt BM, Heubner M et al (2015) Implementation of FAST-PET/MRI for whole-body staging of female patients with recurrent pelvic malignancies: a comparison to PET/CT. Eur J Radiol 84:2097–2102CrossRefPubMedPubMedCentralGoogle Scholar
  17. 17.
    Grueneisen J, Schaarschmidt BM, Heubner M et al (2015) Integrated PET/MRI for whole-body staging of patients with primary cervical cancer: preliminary results. Eur J Nucl Med Mol Imaging 42:1814–1824CrossRefPubMedPubMedCentralGoogle Scholar
  18. 18.
    Lee MS, Cho JY, Kim SY et al (2017) Diagnostic value of integrated PET/MRI for detection and localization of prostate cancer: comparative study of multiparametric MRI and PET/CT. J Magn Reson Imaging 45:597–609CrossRefGoogle Scholar
  19. 19.
    Sarabhai T, Schaarschmidt BM, Wetter A et al (2018) Comparison of 18F-FDG PET/MRI and MRI for pre-therapeutic tumor staging of patients with primary cancer of the uterine cervix. Eur J Nucl Med Mol Imaging 45:67–76CrossRefGoogle Scholar
  20. 20.
    Sawicki LM, Grueneisen J, Schaarschmidt BM et al (2016) Evaluation of 18 F-FDG PET/MRI, 18 F-FDG PET/CT, MRI, and CT in whole-body staging of recurrent breast cancer. Eur J Radiol 85:459–465CrossRefPubMedPubMedCentralGoogle Scholar
  21. 21.
    Grueneisen J, Sawicki LM, Wetter A et al (2017) Evaluation of PET and MR datasets in integrated 18F-FDG PET/MRI: a comparison of different MR sequences for whole-body restaging of breast cancer patients. Eur J Radiol 89:14–19CrossRefPubMedPubMedCentralGoogle Scholar
  22. 22.
    Pace L, Nicolai E, Luongo A et al (2014) Comparison of whole-body PET/CT and PET/MRI in breast cancer patients: lesion detection and quantitation of 18F-deoxyglucose uptake in lesions and in normal organ tissues. Eur J Radiol 83:289–296CrossRefPubMedPubMedCentralGoogle Scholar
  23. 23.
    Catalano OA, Daye D, Signore A et al (2017) Staging performance of whole-body DWI, PET/CT and PET/MRI in invasive ductal carcinoma of the breast. Int J Oncol 51:281–288CrossRefPubMedPubMedCentralGoogle Scholar
  24. 24.
    Eiber M, Takei T, Souvatzoglou M et al (2014) Performance of whole-body integrated 18F-FDG PET/MR in comparison to PET/CT for evaluation of malignant bone lesions. J Nucl Med 55:191–197CrossRefPubMedPubMedCentralGoogle Scholar
  25. 25.
    Schaarschmidt BM, Grueneisen J, Metzenmacher M et al (2017) Thoracic staging with 18F-FDG PET/MR in non-small cell lung cancer - does it change therapeutic decisions in comparison to 18F-FDG PET/CT? Eur Radiol 27:681–688CrossRefPubMedPubMedCentralGoogle Scholar
  26. 26.
    Sawicki LM, Grueneisen J, Buchbender C et al (2016) Comparative performance of 18F-FDG PET/MRI and 18F-FDG PET/CT in detection and characterization of pulmonary lesions in 121 oncologic patients. J Nucl Med 57:582–586CrossRefPubMedPubMedCentralGoogle Scholar
  27. 27.
    Rausch I, Quick HH, Cal-Gonzalez J, Sattler B, Boellaard R, Beyer T (2017) Technical and instrumentational foundations of PET/MRI. Eur J Radiol 94:A3–A13Google Scholar
  28. 28.
    Brendle CB, Schmidt H, Fleischer S, Braeuning UH, Pfannenberg CA, Schwenzer NF (2013) Simultaneously acquired MR/PET images compared with sequential MR/PET and PET/CT: alignment quality. Radiology 268:190–199Google Scholar
  29. 29.
    Kitajima K, Suenaga Y, Ueno Y et al (2013) Value of fusion of PET and MRI for staging of endometrial cancer: comparison with 18F-FDG contrast-enhanced PET/CT and dynamic contrast-enhanced pelvic MRI. Eur J Radiol 82:1672–1676CrossRefPubMedPubMedCentralGoogle Scholar
  30. 30.
    Kitajima K, Suenaga Y, Ueno Y et al (2014) Fusion of PET and MRI for staging of uterine cervical cancer: comparison with contrast-enhanced 18F-FDG PET/CT and pelvic MRI. Clin Imaging 38:464–469CrossRefPubMedPubMedCentralGoogle Scholar
  31. 31.
    Stecco A, Buemi F, Cassarà A et al (2016) Comparison of retrospective PET and MRI-DWI (PET/MRI-DWI) image fusion with PET/CT and MRI-DWI in detection of cervical and endometrial cancer lymph node metastases. Radiol Med 121:537–545CrossRefPubMedPubMedCentralGoogle Scholar
  32. 32.
    Kim SK, Choi HJ, Park SY et al (2009) Additional value of MR/PET fusion compared with PET/CT in the detection of lymph node metastases in cervical cancer patients. Eur J Cancer 45:2103–2109CrossRefPubMedPubMedCentralGoogle Scholar
  33. 33.
    Nakajo K, Tatsumi M, Inoue A et al (2010) Diagnostic performance of fluorodeoxyglucose positron emission tomography/magnetic resonance imaging fusion images of gynecological malignant tumors: comparison with positron emission tomography/computed tomography. Jpn J Radiol 28:95–100CrossRefPubMedPubMedCentralGoogle Scholar
  34. 34.
    Kanda T, Kitajima K, Suenaga Y et al (2013) Value of retrospective image fusion of 18 F-FDG PET and MRI for preoperative staging of head and neck cancer: comparison with PET/CT and contrast-enhanced neck MRI. Eur J Radiol 82:2005–2010CrossRefPubMedPubMedCentralGoogle Scholar
  35. 35.
    Hempel JM, Kloeckner R, Krick S et al (2016) Impact of combined FDG-PET/CT and MRI on the detection of local recurrence and nodal metastases in thyroid cancer. Cancer Imaging 16:37CrossRefPubMedPubMedCentralGoogle Scholar
  36. 36.
    Lahaye MJ, Engelen SM, Nelemans PJ et al (2005) Imaging for predicting the risk factors --the circumferential resection margin and nodal disease-- of local recurrence in rectal cancer: a meta-analysis. Semin Ultrasound CT MR 26:259–268CrossRefPubMedPubMedCentralGoogle Scholar
  37. 37.
    Belhocine T, Thille A, Fridman V et al (2002) Contribution of whole-body 18FDG PET imaging in the management of cervical cancer. Gynecol Oncol 87:90–97CrossRefPubMedPubMedCentralGoogle Scholar
  38. 38.
    Narayan K, Hicks RJ, Jobling T, Bernshaw D, McKenzie AF (2001) A comparison of MRI and PET scanning in surgically staged loco-regionally advanced cervical cancer: potential impact on treatment. Int J Gynecol Cancer 11:263–271Google Scholar
  39. 39.
    Mahmud A, Poon R, Jonker D (2017) PET imaging in anal canal cancer: a systematic review and meta-analysis. Br J Radiol 90:20170370CrossRefPubMedPubMedCentralGoogle Scholar
  40. 40.
    Lambregts DM, Vandecaveye V, Barbaro B et al (2011) Diffusion-weighted MRI for selection of complete responders after chemoradiation for locally advanced rectal cancer: a multicenter study. Ann Surg Oncol 18:2224–2231CrossRefPubMedPubMedCentralGoogle Scholar
  41. 41.
    Van Kessel CS, Buckens CF, van den Bosch MA et al (2012) Preoperative imaging of colorectal liver metastases after neoadjuvant chemotherapy: a meta-analysis. Ann Surg Oncol 19:2805–2813CrossRefPubMedPubMedCentralGoogle Scholar
  42. 42.
    Samarin A, Hüllner M, Queiroz MA et al (2015) 18F-FDG-PET/MR increases diagnostic confidence in detection of bone metastases compared with 18F-FDG-PET/CT. Nucl Med Commun 36:1165–1173CrossRefPubMedPubMedCentralGoogle Scholar
  43. 43.
    Huellner MW, Appenzeller P, Kuhn FP et al (2014) Whole-body nonenhanced PET/MR versus PET/CT in the staging and restaging of cancers: preliminary observations. Radiology 273:859–869CrossRefPubMedPubMedCentralGoogle Scholar
  44. 44.
    Kuhn FP, Hüllner M, Mader CE et al (2014) Contrast-enhanced PET/MR imaging versus contrast-enhanced PET/CT in head and neck cancer: how much MR information is needed? J Nucl Med 55:551–558CrossRefPubMedPubMedCentralGoogle Scholar
  45. 45.
    Taouli B, Beer AJ, Chenevert T et al (2016) Diffusion-weighted imaging outside the brain: consensus statement from an ISMRM-sponsored workshop. J Magn Reson Imaging 44:521–540CrossRefPubMedPubMedCentralGoogle Scholar
  46. 46.
    Charles-Edwards EM, deSouza NM (2006) Diffusion-weighted magnetic resonance imaging and its application to cancer. Cancer Imaging 6:135–143CrossRefPubMedPubMedCentralGoogle Scholar

Copyright information

© European Society of Radiology 2019

Authors and Affiliations

  • Lisa A. Min
    • 1
    • 2
  • Wouter V. Vogel
    • 3
    • 4
  • Max J. Lahaye
    • 1
  • Monique Maas
    • 1
  • Maarten L. Donswijk
    • 3
  • Erik Vegt
    • 3
  • Miranda Kusters
    • 5
    • 6
  • Henry J. Zijlmans
    • 7
  • Katarzyna Jóźwiak
    • 8
  • Sander Roberti
    • 8
  • Regina G. H. Beets-Tan
    • 1
    • 2
  • Doenja M. J. Lambregts
    • 1
    Email author
  1. 1.Department of RadiologyThe Netherlands Cancer InstituteAmsterdamThe Netherlands
  2. 2.GROW School for Oncology and Developmental Biology – University of MaastrichtMaastrichtThe Netherlands
  3. 3.Department of Nuclear MedicineThe Netherlands Cancer InstituteAmsterdamThe Netherlands
  4. 4.Department of Radiation OncologyThe Netherlands Cancer InstituteAmsterdamThe Netherlands
  5. 5.Department of Surgical OncologyThe Netherlands Cancer InstituteAmsterdamThe Netherlands
  6. 6.Department of SurgeryAmsterdam University Medical Centers (location VUmc)AmsterdamThe Netherlands
  7. 7.Department of Gynecologic OncologyThe Netherlands Cancer InstituteAmsterdamThe Netherlands
  8. 8.Department of Epidemiology and BiostatisticsThe Netherlands Cancer InstituteAmsterdamThe Netherlands

Personalised recommendations