Iso- or hyperintensity of hepatocellular adenomas on hepatobiliary phase does not always correspond to hepatospecific contrast-agent uptake: importance for tumor subtyping

  • Edouard Reizine
  • Maxime RonotEmail author
  • Frederic Pigneur
  • Yvonne Purcell
  • Sebastien Mulé
  • Marco Dioguardi Burgio
  • Julien Calderaro
  • Giuliana Amaddeo
  • Alexis Laurent
  • Valérie Vilgrain
  • Alain Luciani



This study was conducted in order to evaluate if iso- or hyperintensity of HCAs on HBP is systematically related to a high uptake of hepatospecific contrast agent, using a quantitative approach.


This bicentric retrospective study included all patients with histologically confirmed and subtyped HCA from 2009 to 2017 who underwent MRI with HBP after Gd-BOPTA injection and who showed iso- or hyperintensity on HBP. The signal intensity of tumors on pre- and postcontrast images and the presence of hepatic steatosis were noted. Contrast uptake on HBP was quantified using the liver-to-lesion contrast enhancement ratio (LLCER) and compared between HCA subtypes (Wilcoxon signed-rank test). Categorical variables were compared using chi-square tests.


Twenty-four HCAs showed iso- or hyperintensity on HBP, specifically 17 inflammatory (IHCAs) and 7 β-catenin HCAs (BHCAs). Eighteen HCAs (75%) (17 IHCAs and 1 BHCAs) had a LLCER < 0% (median − 13.6%, group 1), of which 94% were hyperintense on precontrast T1-W images, with background hepatic steatosis. Six HCAs (25%) had LLCER ≥ 0% (median 2.9%, group 2), and all were BHCAs. A LLCER ≥ 1.6% was associated with the diagnosis of BHCA with a sensitivity of 86% and a specificity of 100%.


In conclusion, iso- or hyperintensity of hepatocellular adenomas on HBP does not necessarily correspond to an increased hepatospecific contrast-agent uptake. In IHCA, tumor hyperintensity on precontrast images and the underlying steatosis likely explain such iso- or hyperintensity, which do show reduced HBP contrast-agent uptake. On the other hand, marked contrast uptake can be observed, especially in BHCA.

Key Points

• Iso- or hyperintensity on HBP does not necessarily reflect a high uptake of hepatospecific contrast agent.

• Discrepancies between qualitative signal intensity and quantitative hepatospecific contrast uptake can be explained in IHCA by a combination of tumor hyperintensity on precontrast images and underlying hepatic steatosis.

• In BHCA, iso- or hyperintensity on HBP does actually correspond to a greater contrast uptake than that of the liver, demonstrated by an increased lesion-to-liver contrast enhancement ratio (LLCER).


Adenoma Liver neoplasms Contrast media Magnetic resonance imaging 



β-Catenin-mutated hepatocellular adenoma


Focal nodular hyperplasia


Hepatobiliary phase


Hepatocellular adenoma


HNF1-α-inactivated HCA


Inflammatory HCA


Liver-to-lesion contrast enhancement ratio


Organic anion transporting polypeptide


Signal intensity


Signal intensity ratio



The authors state that this work has not received any funding.

Compliance with ethical standards


The scientific guarantor of this publication is Maxime Ronot.

Conflict of interest

The authors declare that they have no conflict of interest.

Statistics and biometry

No complex statistical methods were necessary for this paper.

Informed consent

Written informed consent was waived by the Institutional Review Board.

Ethical approval

Institutional Review Board approval was obtained.

Study subjects or cohorts overlap

Some study subjects or cohorts have been previously reported in a previous manuscript in the European Radiology focusing on a correlation between the quantitative analysis of benign hepatocellular tumor uptake on HBP imaging and the quantitative level of OATP expression [28].


• retrospective

• diagnostic or prognostic study

• multicenter study

Supplementary material

330_2019_6150_MOESM1_ESM.docx (1.2 mb)
ESM 1 (DOCX 1258 kb)


  1. 1.
    Edmondson HA, Henderson B, Benton B (1976) Liver-cell adenomas associated with use of oral contraceptives. N Engl J Med 294:470–472. CrossRefGoogle Scholar
  2. 2.
    Nault JC, Bioulac-Sage P, Zucman-Rossi J (2013) Hepatocellular benign tumors—from molecular classification to personalized clinical care. Gastroenterology 144:888–902. CrossRefGoogle Scholar
  3. 3.
    Belghiti J, Cauchy F, Paradis V, Vilgrain V (2014) Diagnosis and management of solid benign liver lesions. Nat Rev Gastroenterol Hepatol 11:737–749. CrossRefGoogle Scholar
  4. 4.
    European Association for the Study of the Liver (EASL) (2016) EASL clinical practice guidelines on the management of benign liver tumours. J Hepatol 65:386–398. CrossRefGoogle Scholar
  5. 5.
    Nault JC, Paradis V, Cherqui D, Vilgrain V, Zucman-Rossi J (2017) Molecular classification of hepatocellular adenoma in clinical practice. J Hepatol 67:1074–1083.
  6. 6.
    Dokmak S, Paradis V, Vilgrain V et al (2009) A single-center surgical experience of 122 patients with single and multiple hepatocellular adenomas. Gastroenterology 137:1698–1705. CrossRefGoogle Scholar
  7. 7.
    Farges O, Ferreira N, Dokmak S, Belghiti J, Bedossa P, Paradis V (2011) Changing trends in malignant transformation of hepatocellular adenoma. Gut 60:85–89.
  8. 8.
    Nault JC, Couchy G, Balabaud C et al (2017) Molecular classification of hepatocellular adenoma associates with risk factors, bleeding, and malignant transformation. Gastroenterology 152:880–894.e6. CrossRefGoogle Scholar
  9. 9.
    Lewin M, Handra-Luca A, Arrivé L et al (2006) Liver adenomatosis: classification of MR imaging features and comparison with pathologic findings. Radiology 241:433–440. CrossRefGoogle Scholar
  10. 10.
    Laumonier H, Bioulac-Sage P, Laurent C, Zucman-Rossi J, Balabaud C, Trillaud H (2008) Hepatocellular adenomas: magnetic resonance imaging features as a function of molecular pathological classification. Hepatology 48:808–818.
  11. 11.
    Ronot M, Bahrami S, Calderaro J et al (2011) Hepatocellular adenomas: accuracy of magnetic resonance imaging and liver biopsy in subtype classification. Hepatology 53:1182–1191. CrossRefGoogle Scholar
  12. 12.
    Ronot M, Vilgrain V (2014) Imaging of benign hepatocellular lesions: current concepts and recent updates. Clin Res Hepatol Gastroenterol 38:681–688. CrossRefGoogle Scholar
  13. 13.
    Kreft BP, Baba Y, Tanimoto A, Finn JP, Stark DD (1993) Orally administered manganese chloride: enhanced detection of hepatic tumors in rats. Radiology 186:543–548.
  14. 14.
    Ni Y, Marchal G, Yu J, Mühler A, Lukito G, Baert AL (1994) Prolonged positive contrast enhancement with Gd-EOB-DTPA in experimental liver tumors: potential value in tissue characterization. J Magn Reson Imaging 4:355–363Google Scholar
  15. 15.
    Ni Y, Marchal G (1998) Enhanced magnetic resonance imaging for tissue characterization of liver abnormalities with hepatobiliary contrast agents: an overview of preclinical animal experiments. Top Magn Reson Imaging 9:183–195CrossRefGoogle Scholar
  16. 16.
    Grazioli L, Morana G, Kirchin MA, Schneider G (2005) Accurate differentiation of focal nodular hyperplasia from hepatic adenoma at gadobenate dimeglumine-enhanced MR imaging: prospective study. Radiology 236:166–177. CrossRefGoogle Scholar
  17. 17.
    Grazioli L, Bondioni MP, Haradome H et al (2012) Hepatocellular adenoma and focal nodular hyperplasia: value of gadoxetic acid-enhanced MR imaging in differential diagnosis. Radiology 262:520–529. CrossRefGoogle Scholar
  18. 18.
    Bieze M, van den Esschert JW, Nio CY et al (2012) Diagnostic accuracy of MRI in differentiating hepatocellular adenoma from focal nodular hyperplasia: prospective study of the additional value of gadoxetate disodium. AJR Am J Roentgenol 199:26–34. CrossRefGoogle Scholar
  19. 19.
    Suh CH, Kim KW, Kim GY, Shin YM, Kim PN, Park SH (2015) The diagnostic value of Gd-EOB-DTPA-MRI for the diagnosis of focal nodular hyperplasia: a systematic review and meta-analysis. Eur Radiol 25:950–960.
  20. 20.
    Neri E, Bali MA, Ba-Ssalamah A et al (2016) ESGAR consensus statement on liver MR imaging and clinical use of liver-specific contrast agents. Eur Radiol 26:921–931. CrossRefGoogle Scholar
  21. 21.
    Merkle EM, Zech CJ, Bartolozzi C et al (2016) Consensus report from the 7th international forum for liver magnetic resonance imaging. Eur Radiol 26:674–682. CrossRefGoogle Scholar
  22. 22.
    Ba-Ssalamah A, Antunes C, Feier D et al (2015) Morphologic and molecular features of hepatocellular adenoma with gadoxetic acid-enhanced MR imaging. Radiology 277:104–113. CrossRefGoogle Scholar
  23. 23.
    Agarwal S, Fuentes-Orrego JM, Arnason T et al (2014) Inflammatory hepatocellular adenomas can mimic focal nodular hyperplasia on gadoxetic acid-enhanced MRI. AJR Am J Roentgenol 203:W408–W414. CrossRefGoogle Scholar
  24. 24.
    Thomeer MG, Willemssen FE, Biermann KK et al (2014) MRI features of inflammatory hepatocellular adenomas on hepatocyte phase imaging with liver-specific contrast agents. J Magn Reson Imaging 39:1259–1264. CrossRefGoogle Scholar
  25. 25.
    Tse JR, Naini BV, Lu DSK, Raman SS (2016) Qualitative and quantitative gadoxetic acid-enhanced MR imaging helps subtype hepatocellular adenomas. Radiology 279:118–127. CrossRefGoogle Scholar
  26. 26.
    Glockner JF, Lee CU, Mounajjed T (2017) Inflammatory hepatic adenomas: characterization with hepatobiliary MRI contrast agents. Magn Reson Imaging 47:103–110. CrossRefGoogle Scholar
  27. 27.
    Yoneda N, Matsui O, Kitao A et al (2016) Benign hepatocellular nodules: hepatobiliary phase of gadoxetic acid-enhanced MR imaging based on molecular background. Radiographics 36:2010–2027. CrossRefGoogle Scholar
  28. 28.
    Reizine E, Amaddeo G, Pigneur F et al (2018) Quantitative correlation between uptake of Gd-BOPTA on hepatobiliary phase and tumor molecular features in patients with benign hepatocellular lesions. Eur Radiol.
  29. 29.
    Yoneda N, Matsui O, Kitao A et al (2012) Beta-catenin-activated hepatocellular adenoma showing hyperintensity on hepatobiliary-phase gadoxetic-enhanced magnetic resonance imaging and overexpression of OATP8. Jpn J Radiol 30:777–782. CrossRefGoogle Scholar
  30. 30.
    Roux M, Pigneur F, Calderaro J et al (2015) Differentiation of focal nodular hyperplasia from hepatocellular adenoma: role of the quantitative analysis of gadobenate dimeglumine-enhanced hepatobiliary phase MRI. J Magn Reson Imaging 42:1249–1258. CrossRefGoogle Scholar
  31. 31.
    Fléjou JF (2011) WHO classification of digestive tumors: the fourth edition. Ann Pathol 31:S27–S31. CrossRefGoogle Scholar
  32. 32.
    Zucman-Rossi J, Jeannot E, Nhieu JT et al (2006) Genotype-phenotype correlation in hepatocellular adenoma: new classification and relationship with HCC. Hepatology 43:515–524. CrossRefGoogle Scholar
  33. 33.
    Bioulac-Sage P, Laumonier H, Couchy G et al (2009) Hepatocellular adenoma management and phenotypic classification: the Bordeaux experience. Hepatology 50:481–489. CrossRefGoogle Scholar
  34. 34.
    Brunt EM, Janney CG, Di Bisceglie AM, Neuschwander-Tetri BA, Bacon BR (1999) Nonalcoholic steatohepatitis: a proposal for grading and staging the histological lesions. Am J Gastroenterol 94:2467–2474.
  35. 35.
    Cassidy FH, Yokoo T, Aganovic L et al (2009) Fatty liver disease: MR imaging techniques for the detection and quantification of liver steatosis. Radiographics 29:231–260.
  36. 36.
    van Aalten SM, Thomeer MGJ, Terkivatan T et al (2011) Hepatocellular adenomas: correlation of MR imaging findings with pathologic subtype classification. Radiology 261:172–181. CrossRefGoogle Scholar
  37. 37.
    Ueno A, Masugi Y, Yamazaki K et al (2014) OATP1B3 expression is strongly associated with Wnt/β-catenin signalling and represents the transporter of gadoxetic acid in hepatocellular carcinoma. J Hepatol 61:1080–1087. CrossRefGoogle Scholar
  38. 38.
    Thomeer MG, E Bröker ME, de Lussanet Q et al (2014) Genotype-phenotype correlations in hepatocellular adenoma: an update of MRI findings. Diagn Interv Radiol 20:193–199. CrossRefGoogle Scholar
  39. 39.
    Thomeer MG, Gest B, van Beek H et al (2018) Quantitative analysis of hepatocellular adenoma and focal nodular hyperplasia in the hepatobiliary phase: external validation of LLCER method using gadobenate dimeglumine as contrast agent. J Magn Reson Imaging 47:860–861. CrossRefGoogle Scholar
  40. 40.
    Roux M, Pigneur F, Luciani A (2018) Response to “Quantitative analysis of hepatocellular adenoma and focal nodular hyperplasia in the hepatobiliary phase: external validation of llcer method using gadobenate dimeglumine as contrast agent”. J Magn Reson Imaging 47:862–863. CrossRefGoogle Scholar
  41. 41.
    Hata H, Inoue Y, Nakajima A, Komi S, Miyatake H (2017) Influence of the magnetic field strength on image contrast in Gd-EOB-DTPA-enhanced MR imaging: comparison between 1.5T and 3.0T. Magn Reson Med Sci 16:109–114.
  42. 42.
    Rohrer M, Bauer H, Mintorovitch J, Requardt M, Weinmann HJ (2005) Comparison of magnetic properties of MRI contrast media solutions at different magnetic field strengths. Invest Radiol 40:715–724Google Scholar
  43. 43.
    Pascolo L, Cupelli F, Anelli PL et al (1999) Molecular mechanisms for the hepatic uptake of magnetic resonance imaging contrast agents. Biochem Biophys Res Commun 257:746–752. CrossRefGoogle Scholar

Copyright information

© European Society of Radiology 2019

Authors and Affiliations

  • Edouard Reizine
    • 1
    • 2
  • Maxime Ronot
    • 2
    • 3
    • 4
    Email author
  • Frederic Pigneur
    • 1
  • Yvonne Purcell
    • 2
  • Sebastien Mulé
    • 1
  • Marco Dioguardi Burgio
    • 2
  • Julien Calderaro
    • 5
    • 6
    • 7
  • Giuliana Amaddeo
    • 6
    • 7
    • 8
  • Alexis Laurent
    • 6
    • 9
  • Valérie Vilgrain
    • 2
    • 3
    • 4
  • Alain Luciani
    • 1
    • 6
    • 7
  1. 1.Department of RadiologyAPHP, HU Henri MondorCreteilFrance
  2. 2.Department of RadiologyAPHP, University Hospitals Paris Nord Val de SeineClichyFrance
  3. 3.University Paris DiderotParisFrance
  4. 4.INSERM U1149, centre de recherche biomédicale Bichat-Beaujon, CRB3ParisFrance
  5. 5.Department of PathologyAPHP, HU Henri MondorCreteilFrance
  6. 6.Faculté de MédecineUniversite Paris Est CreteilCreteilFrance
  7. 7.INSERM Unit U 955CreteilFrance
  8. 8.Department of HepatologyAPHP, HU Henri MondorCreteilFrance
  9. 9.Department of Liver SurgeryAPHP, HU Henri MondorCreteilFrance

Personalised recommendations