Skip to main content

Advertisement

Log in

Diagnostic accuracy of hepatic proton density fat fraction measured by magnetic resonance imaging for the evaluation of liver steatosis with histology as reference standard: a meta-analysis

  • Magnetic Resonance
  • Published:
European Radiology Aims and scope Submit manuscript

Abstract

Objectives

The aim of this meta-analysis was to evaluate the diagnostic accuracy of hepatic magnetic resonance imaging-proton density fat fraction (MRI-PDFF) for the assessment of liver steatosis (LS) with histology as reference standard.

Methods

A systematic literature search was performed to identify pertinent studies. Quality analyses were conducted by Quality Assessment of Diagnostic Accuracy Studies-2. Diagnostic data were extracted and inconsistency index was calculated for LS≥G1, LS≥G2, and LS=G3, respectively. The area under summary receiver operating characteristic curve (AUC) served as the indicator of diagnostic accuracy. The pooled sensitivity and specificity were calculated if threshold effect was absent.

Results

Thirteen studies containing 1100 subjects were included. There was significant threshold effect for LS≥G1. The AUCs for LS≥G1, LS≥G2, and LS=G3 were 0.98 (95% confidence interval (CI) 0.76, 1.00), 0.91 (95% CI 0.89, 0.94), and 0.92 (95% CI 0.89, 0.94), respectively. The pooled sensitivities for LS≥G2 and LS=G3 were 0.83 (95% CI 0.75, 0.88) and 0.79 (95% CI 0.63, 0.90), respectively; the pooled specificities for LS≥G2 and LS=G3 were 0.89 (95% CI 0.84, 0.92) and 0.89 (95% CI 0.84, 0.92), respectively.

Conclusions

MRI-PDFF has high diagnostic accuracy at detecting and grading LS with histology as reference standard, suggesting that MRI-PDFF is able to provide an accurate quantification of LS in clinical trials and patient care.

Key Point

MRI-PDFF is able to provide an accurate quantification of LS in clinical trials and patient care.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

Abbreviations

AUC:

Area under summary receiver operating characteristic curve

CI:

Confidence interval

CSE-MRI:

Chemical shift–encoded magnetic resonance imaging

FN:

False negative

FP:

False positive

LS:

Liver steatosis

MeSH:

Medical Subject Headings

MRS:

Magnetic resonance spectroscopy

NAFLD:

Nonalcoholic fatty liver disease

NASH:

Nonalcoholic steatohepatitis

PDFF:

Proton density fat fraction

SEN:

Sensitivity

SPE:

Specificity

SROC:

Summary receiver operating characteristic

TN:

True negative

TP:

True positive

References

  1. Reeder SB, Cruite I, Hamilton G, Sirlin CB (2011) Quantitative assessment of liver fat with magnetic resonance imaging and spectroscopy. J Magn Reson Imaging 34:729–749

    Article  PubMed  PubMed Central  Google Scholar 

  2. Rinella ME (2015) Nonalcoholic fatty liver disease: a systematic review. JAMA 313:2263–2273

    Article  CAS  PubMed  Google Scholar 

  3. Chalasani N, Younossi Z, Lavine JE et al (2012) The diagnosis and management of non-alcoholic fatty liver disease: practice guideline by the American Association for the Study of Liver Diseases, American College of Gastroenterology, and the American Gastroenterological Association. Hepatology 55:2005–2023

    Article  PubMed  Google Scholar 

  4. Stinton LM, Loomba R (2014) Recommendations for liver biopsy evaluation in non-alcoholic fatty liver disease. Minerva Gastroenterol Dietol 60:5–13

    CAS  PubMed  Google Scholar 

  5. Fernandez-Salazar L, Velayos B, Aller R, Lozano F, Garrote JA, Gonzalez JM (2011) Percutaneous liver biopsy: patients’ point of view. Scand J Gastroenterol 46:727–731

    Article  PubMed  Google Scholar 

  6. Bravo AA, Sheth SG, Chopra S (2001) Liver biopsy. N Engl J Med 344:495–500

    Article  CAS  PubMed  Google Scholar 

  7. Regev A, Berho M, Jeffers LJ et al (2002) Sampling error and intraobserver variation in liver biopsy in patients with chronic HCV infection. Am J Gastroenterol 97:2614–2618

    Article  PubMed  Google Scholar 

  8. Bedogni G, Nobili V, Tiribelli C (2014) Epidemiology of fatty liver: an update. World J Gastroenterol 20:9050–9054

    PubMed  PubMed Central  Google Scholar 

  9. Idilman IS, Keskin O, Celik A et al (2016) A comparison of liver fat content as determined by magnetic resonance imaging-proton density fat fraction and MRS versus liver histology in non-alcoholic fatty liver disease. Acta Radiol 57:271–278

    Article  PubMed  Google Scholar 

  10. Tang A, Desai A, Hamilton G et al (2015) Accuracy of MR imaging-estimated proton density fat fraction for classification of dichotomized histologic steatosis grades in nonalcoholic fatty liver disease. Radiology 274:416–425

    Article  PubMed  Google Scholar 

  11. Hamilton G, Yokoo T, Bydder M et al (2011) In vivo characterization of the liver fat ¹H MR spectrum. NMR Biomed 24:784–790

  12. Meisamy S, Hines CDG, Hamilton G et al (2011) Quantification of hepatic steatosis with T1-independent, T2*-corrected MR imaging with spectral modeling of fat: blinded comparison with MR spectroscopy. Radiology 258:767–775

    Article  PubMed  PubMed Central  Google Scholar 

  13. Kim KY, Song JS, Kannengiesser S, Han YM (2015) Hepatic fat quantification using the proton density fat fraction (PDFF): utility of free-drawn-PDFF with a large coverage area. Radiol Med 120:1083–1093

    Article  PubMed  Google Scholar 

  14. Motosugi U, Hernando D, Bannas P et al (2015) Quantification of liver fat with respiratory-gated quantitative chemical shift encoded MRI. J Magn Reson Imaging 42:1241–1248

    Article  PubMed  PubMed Central  Google Scholar 

  15. Rehm JL, Wolfgram PM, Hernando D, Eickhoff JC, Allen DB, Reeder SB (2015) Proton density fat-fraction is an accurate biomarker of hepatic steatosis in adolescent girls and young women. Eur Radiol 25:2921–2930

    Article  PubMed  PubMed Central  Google Scholar 

  16. Hetterich H, Bayerl C, Peters A et al (2016) Feasibility of a three-step magnetic resonance imaging approach for the assessment of hepatic steatosis in an asymptomatic study population. Eur Radiol 26:1895–1904

    Article  PubMed  Google Scholar 

  17. Park CC, Hooker C, Hooker JC et al (2018) Assessment of a high-SNR chemical-shift-encoded MRI with complex reconstruction for proton density fat fraction (PDFF) estimation overall and in the low-fat range. J Magn Reson Imaging. https://doi.org/10.1002/jmri.26168

  18. Bonekamp S, Tang A, Mashhood A et al (2014) Spatial distribution of MRI-determined hepatic proton density fat fraction in adults with nonalcoholic fatty liver disease. J Magn Reson Imaging 39:1525–1532

    Article  PubMed  PubMed Central  Google Scholar 

  19. Angulo P (2006) Nonalcoholic fatty liver disease and liver transplantation. Liver Transpl 12:523–534

    Article  PubMed  Google Scholar 

  20. Middleton MS, Van Natta ML, Heba ER et al (2018) Diagnostic accuracy of magnetic resonance imaging hepatic proton density fat fraction in pediatric nonalcoholic fatty liver disease. Hepatology 67:858–872

    Article  CAS  PubMed  Google Scholar 

  21. Park CC, Phirum N, Hernandez C et al (2017) Magnetic resonance elastography vs transient elastography in detection of fibrosis and noninvasive measurement of steatosis in patients with biopsy-proven nonalcoholic fatty liver disease. Gastroenterology 152:598–607

    Article  PubMed  Google Scholar 

  22. Paige JS, Bernstein GS, Heba E et al (2017) A pilo comparative study of quantitative ultrasound, conventional ultrasound, and MRI for predicting histology-determined steatosis grade in adult nonalcoholic fatty liver disease. AJR Am J Roentgenol 208:W168–W177

    Article  PubMed  PubMed Central  Google Scholar 

  23. Middleton MS, Heba ER, Hooker CA et al (2017) Agreement between magnetic resonance imaging proton density fat fraction measurements and pathologist-assigned steatosis grades of liver biopsies from adults with nonalcoholic steatohepatitis. Gastroenterology 153:753–761

    Article  PubMed  Google Scholar 

  24. Schwimmer JB, Middleton MS, Behling C et al (2015) Magnetic resonance imaging and liver histology as biomarkers of hepatic steatosis in children with nonalcoholic fatty liver disease. Hepatology 61:1887–1895

    Article  CAS  PubMed  Google Scholar 

  25. Paparo F, Cenderello G, Revelli M et al (2015) Diagnostic value of MRI proton density fat fraction for assessing liver steatosis in chronic viral C hepatitis. Biomed Res Int 2015:758164

    Article  PubMed  PubMed Central  Google Scholar 

  26. Chiang HJ, Lin LH, Li CW et al (2014) Magnetic resonance fat quantification in living donor liver transplantation. Transplant Proc 46:666–668

    Article  PubMed  Google Scholar 

  27. Tang A, Tan J, Sun M et al (2013) Nonalcoholic fatty liver disease: MR imaging of liver proton density fat fraction to assess hepatic steatosis. Radiology 267:422–431

    Article  PubMed  PubMed Central  Google Scholar 

  28. Idilman IS, Aniktar H, Idilman R et al (2013) Hepatic steatosis: quantification by proton density fat fraction with MR imaging versus liver biopsy. Radiology 267:767–775

    Article  PubMed  Google Scholar 

  29. Kuhn JP, Hernando D, Munoz del Rio A et al (2012) Effect of multipeak spectral modeling of fat for liver iron and fat quantification: correlation of biopsy with MR imaging results. Radiology 265:133–142

    Article  PubMed  PubMed Central  Google Scholar 

  30. Joe E, Lee JM, Kim KW et al (2012) Quantification of hepatic macrosteatosis in living, related liver donors using T1-independent, T2corrected chemical shift MRI. J Magn Reson Imaging 36:1124–1130

    Article  PubMed  Google Scholar 

  31. Zand KA, Shah A, Heba E et al (2015) Accuracy of multiecho magnitude-based MRI (M-MRI) for estimation of hepatic proton density fat fraction (PDFF) in children. J Magn Reson Imaging 42:1223–1232

    Article  PubMed  PubMed Central  Google Scholar 

  32. Heba ER, Desai A, Zand KA et al (2016) Accuracy and the effect of possible subject-based confounders of magnitude-based MRI for estimating hepatic proton density fat fraction in adults, using MR spectroscopy as reference. J Magn Reson Imaging 43:398–406

    Article  PubMed  Google Scholar 

  33. Yokoo T, Serai SD, Pirasteh A et al (2018) Linearity, bias, and precision of hepatic proton density fat fraction measurements by using MR imaging: a meta-analysis. Radiology 286:486–498

    Article  PubMed  Google Scholar 

  34. Whiting PF, Rutjes AW, Westwood ME et al (2011) QUADAS-2: a revised tool for the quality assessment of diagnostic accuracy studies. Ann Intern Med 155:529–536

    Article  PubMed  Google Scholar 

  35. Kleiner DE, Brunt EM, Van Natta M et al (2005) Design and validation of a histological scoring system for nonalcoholic fatty liver disease. Hepatology 41:1313–1321

    Article  PubMed  Google Scholar 

  36. Higgins JPT, Thompson SG, Deeks JJ, DG A (2003) Mearuing inconsistency in meta-analyses. BMJ 327:557–560

    Article  PubMed  PubMed Central  Google Scholar 

  37. Dwamena BA (2007) Midas: a program for meta-analytical integration of diagnostic accuracy studies in Stata. Division of Nuclear Medicine, Department of Radiology, University of Michigan Medical School, Ann Arbor, Michigan. Available via http://fmwww.bc.edu/repec/bocode/m/midas.html. Accessed 16 June 2018

  38. Egger M, Juni P, Bartlett C, Holenstein F, Sterne J (2003) How important are comprehensive literature searches and the assessment of trial quality in systematic reviews? Empirical study. Health Technol Assess Rep 7:1–76

    CAS  Google Scholar 

  39. Zamora J, Abraira V, Muriel A, Khan K, Coomarasamy A (2006) Meta-DiSc: a software for meta-analysis of test accuracy data. BMC Med Res Methodol 6:31

    Article  PubMed  PubMed Central  Google Scholar 

  40. Reitsma JB, Glas AS, Rutjes AW, Scholten RJ, Bossuyt PM, Zwinderman AH (2005) Bivariate analysis of sensitivity and specificity produces informative summary measures in diagnostic reviews. J Clin Epidemiol 58:982–990

    Article  PubMed  Google Scholar 

  41. Cronin P, Kelly AM, Altaee D, Foerster B, Petrou M, Dwamena BA (2018) How to perform a systematic review and meta-analysis of diagnostic imaging studies. Acad Radiol 25:573–593

    Article  PubMed  Google Scholar 

  42. Moses LE, Shapiro D, Littenberg B (1993) Combining independent studies of a diagnostic test into a summary ROC curve: data-analytic approaches and some additional considerations. Stat Med 12:1293–1316

    Article  CAS  PubMed  Google Scholar 

  43. Dukic V, Gatsonis C (2003) Meta-analysis of diagnostic test accuracy assessment studies with varying number of thresholds. Biometrics 59:936–946

    Article  CAS  PubMed  Google Scholar 

  44. Deeks JJ, Macaskill P, Irwig L (2005) The performance of tests of publication bias and other sample size effects in systematic reviews of diagnostic test accuracy was assessed. J Clin Epidemiol 58:882–893

    Article  PubMed  Google Scholar 

  45. Bohte AE, van Werven JR, Bipat S, Stoker J (2011) The diagnostic accuracy of US, CT, MRI and 1H-MRS for the evaluation of hepatic steatosis compared with liver biopsy: a meta-analysis. Eur Radiol 21:87–97

    Article  PubMed  Google Scholar 

  46. Deng J, Fishbein MH, Rigsby CK, Zhang G, Schoeneman SE, Donaldson JS (2014) Quantitative MRI for hepatic fat fraction and T2* measurement in pediatric patients with non-alcoholic fatty liver disease. Pediatr Radiol 44:1379–1387

    Article  PubMed  Google Scholar 

  47. Idilman IS, Keskin O, Elhan AH, Idilman R, Karcaaltincaba M (2014) Impact of sequential proton density fat fraction for quantification of hepatic steatosis in nonalcoholic fatty liver disease. Scand J Gastroenterol 49:617–624

    Article  PubMed  Google Scholar 

  48. Joy TR, McKenzie CA, Tirona RG et al (2017) Sitagliptin in patients with non-alcoholic steatohepatitis: a randomized, placebo-controlled trial. World J Gastroenterol 23:141–150

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Kukuk GM, Hittatiya K, Sprinkart AM et al (2015) Comparison between modified Dixon MRI techniques, MR spectroscopic relaxometry, and different histologic quantification methods in the assessment of hepatic steatosis. Eur Radiol 25:2869–2879

    Article  PubMed  Google Scholar 

  50. Loomba R, Sirlin CB, Ang B et al (2015) Ezetimibe for the treatment of nonalcoholic steatohepatitis: assessment by novel magnetic resonance imaging and magnetic resonance elastography in a randomized trial (MOZART trial). Hepatology 61:1239–1250

    Article  CAS  PubMed  Google Scholar 

  51. Cui J, Philo L, Nguyen P et al (2016) Sitagliptin vs. placebo for non-alcoholic fatty liver disease: a randomized controlled trial. J Hepatol 65:369–376

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Caussy C, Alquiraish MH, Nguyen P et al (2018) Optimal threshold of controlled attenuation parameter with MRI-PDFF as the gold standard for the detection of hepatic steatosis. Hepatology 67:1348–1359

    Article  CAS  PubMed  Google Scholar 

  53. Jayakumar S, Middleton MS, Lawitz EJ et al (2019) Longitudinal correlations between MRE, MRI-PDFF, and liver histology in patients with non-alcoholic steatohepatitis: analysis of data from a phase II trial of selonsertib. J Hepatol 70:133–141

    Article  PubMed  Google Scholar 

  54. Ratziu V, Charlotte F, Heurtier A et al (2005) Sampling variability of liver biopsy in nonalcoholic fatty liver disease. Gastroenterology 128:1898–1906

    Article  PubMed  Google Scholar 

  55. Tyagi A, Yeganeh O, Levin Y et al (2015) Intra- and inter-examination repeatability of magnetic resonance spectroscopy, magnitude-based MRI, and complex-based MRI for estimation of hepatic proton density fat fraction in overweight and obese children and adults. Abdom Imaging 40:3070–3077

    Article  PubMed  PubMed Central  Google Scholar 

  56. Yokoo T, Shiehmorteza M, Hamilton G et al (2011) Estimation of hepatic proton-density fat fraction by using MR imaging at 3.0 T. Radiology 258:749–759

    Article  PubMed  PubMed Central  Google Scholar 

  57. Tian F, Shen G, Deng Y, Diao W, Jia Z (2017) The accuracy of 18F-FDG PET/CT in predicting the pathological response to neoadjuvant chemotherapy in patients with breast cancer: a meta-analysis and systematic review. Eur Radiol 4786–4796. https://doi.org/10.1007/s00330-017-4831-y

  58. Hernaez R, Lazo M, Bonekamp S et al (2011) Diagnostic accuracy and reliability of ultrasonography for the detection of fatty liver: a meta-analysis. Hepatology 54:1082–1090

    Article  PubMed  Google Scholar 

  59. Foerster BR, Dwamena BA, Petrou M, Carlos RC, Callaghan BC, Pomper MG (2012) Diagnostic accuracy using diffusion tensor imaging in the diagnosis of ALS: a meta-analysis. Acad Radiol 19:1075–1086

    Article  PubMed  PubMed Central  Google Scholar 

  60. Macaskill P, Gatsonis C, Deeks J, Harbord R, Takwoingi Y (2010) Chapter 10: Analysing and presenting results. In: Deeks JJ, Bossuyt PM, Gatsonis C (eds) Cochrane handbook for systematic reviews of diagnostic test accuracy Version 1.0. The Cochrane Collaboration. Available via http://srdta.cochrane.org/. Accessed 21 June 2018

Download references

Funding

This study has received funding by the National Natural Science Foundation of China, No. 81471658.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bin Song.

Ethics declarations

Guarantor

The scientific guarantor of this publication is Bin Song.

Conflict of interest

The authors of this manuscript declare no relationships with any companies, whose products or services may be related to the subject matter of the article.

Statistics and biometry

No complex statistical methods were necessary for this paper.

Informed consent

Written informed consent was not required for this study because this study is based on the published studies to perform the meta-analysis.

Ethical approval

Institutional Review Board approval was not required because this study is based on the published studies to perform data analysis.

Methodology

• retrospective

• diagnostic or prognostic study

• performed at one institution

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

ESM 1

(DOCX 44 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Qu, Y., Li, M., Hamilton, G. et al. Diagnostic accuracy of hepatic proton density fat fraction measured by magnetic resonance imaging for the evaluation of liver steatosis with histology as reference standard: a meta-analysis. Eur Radiol 29, 5180–5189 (2019). https://doi.org/10.1007/s00330-019-06071-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00330-019-06071-5

Keywords

Navigation