Advertisement

Fetal dynamic phase-contrast MR angiography using ultrasound gating and comparison with Doppler ultrasound measurements

  • B. P. Schoennagel
  • J. Yamamura
  • F. Kording
  • R. Fischer
  • P. Bannas
  • G. Adam
  • H. Kooijman
  • C. Ruprecht
  • K. Fehrs
  • M. Tavares de Sousa
Magnetic Resonance
  • 33 Downloads

Abstract

Objectives

To investigate the feasibility of fetal phase-contrast (PC)-MR angiography of the descending aorta (AoD) using an MR-compatible Doppler ultrasound sensor (DUS) for fetal cardiac gating and to compare velocimetry with Doppler ultrasound measurements.

Methods

In this prospective study, 2D PC-MR angiography was performed in 12 human fetuses (mean gestational age 32.8 weeks) using an MR-compatible DUS for gating of the fetal heart at 1.5 T. Peak flow velocities in the fetal AoD were compared with Doppler ultrasound measurements performed on the same day. Reproducibility of PC-MR measurements was tested by repeated PC-MR in five fetuses.

Results

Dynamic PC-MR angiography in the AoD was successfully performed in all fetuses using the DUS, with an average fetal heart rate of 140 bpm (range 129–163). Time-velocity curves revealed typical arterial blood flow patterns. PC-MR mean flow velocity and mean flux were 21.2 cm/s (range 8.6–36.8) and 8.4 ml/s (range 3.2–14.6), respectively. A positive association between PC-MR mean flux and stroke volume with gestational age was obtained (r = 0.66, p = 0.02 and r = 0.63, p = 0.03). PC-MR and Doppler ultrasound peak velocities revealed a highly significant correlation (r = 0.8, p < 0.002). Peak velocities were lower for PC-MR with 69.1 cm/s (range 39–125) compared with 96.7 cm/s (range 60–142) for Doppler ultrasound (p < 0.001). Reproducibility of PC-MR was high (p > 0.05).

Conclusion

The MR-compatible DUS for fetal cardiac gating allows for PC-MR angiography in the fetal AoD. Comparison with Doppler ultrasound revealed a highly significant correlation of peak velocities with underestimation of PC-MR velocities. This new technique for direct fetal cardiac gating indicates the potential of PC-MR angiography for assessing fetal hemodynamics.

Key Points

• The developed MR-compatible Doppler ultrasound sensor allows direct fetal cardiac gating and can be used for prenatal dynamic cardiovascular MRI.

• The MR-compatible Doppler ultrasound sensor was successfully applied to perform intrauterine phase-contrast MR angiography of the fetal aorta, which revealed a highly significant correlation with Doppler ultrasound measurements.

• As fetal flow hemodynamics is an important parameter in the diagnosis and management of fetal pathologies, fetal phase-contrast MR angiography may offer an alternative imaging method in addition to Doppler ultrasound and develop as a second line tool in the evaluation of fetal flow hemodynamics.

Keywords

Fetal research Magnetic resonance angiography Ultrasonography, Doppler Blood flow velocity 

Abbreviations

AoD

Descending aorta

DUS

Doppler ultrasound sensor

Notes

Funding

This study has received funding from the German Research Foundation (DFG).

Compliance with ethical standards

Guarantor

The scientific guarantor of this publication is Prof. Dr. Gerhard Adam.

Conflict of interest

The authors of this manuscript declare relationships with the following companies: The authors BS, JY, FK, KF, CR, and MTS are co-founders and stakeholders of northh medical GmbH, the developing company of the Doppler ultrasound gating device.

Statistics and biometry

Dr. Roland Fischer, who is a co-author of this manuscript, kindly provided statistical advice for this manuscript.

Informed consent

Written informed consent was obtained from all subjects (patients) in this study.

Ethical approval

Institutional Review Board approval was obtained.

Study subjects or cohorts overlap

Singular subjects of this study have been part of a previous publication performing fetal cardiac MRI, therefore investigating a different issue of fetal MR imaging than PC-MR angiography.

Methodology

• prospective

• experimental

• performed at one institution

References

  1. 1.
    Vollgraff Heidweiller-Schreurs CA, De Boer MA, Heymans MW et al (2018) Prognostic accuracy of cerebroplacental ratio and middle cerebral artery Doppler for adverse perinatal outcome: systemic review and meta-analysis. Ultrasound Obstet Gynecol 51:313–322.  https://doi.org/10.1002/uog.18809 CrossRefPubMedPubMedCentralGoogle Scholar
  2. 2.
    Hendler I, Blackwell SC, Bujold E et al (2004) The impact of maternal obesity on midtrimester sonographic visualization of fetal cardiac and craniospinal structures. Int J Obes Relat Metab Disord 28:1607–1611.  https://doi.org/10.1038/sj.ijo.0802759 CrossRefPubMedGoogle Scholar
  3. 3.
    Gill RW (1985) Measurement of blood flow by ultrasound: accuracy and sources of error. Ultrasound Med Biol 11:625–641CrossRefGoogle Scholar
  4. 4.
    Ranke C, Hendrickx P, Roth U, Brassel F, Creutzig A, Alexander K (1992) Color and conventional image-directed Doppler ultrasonography: accuracy and sources of error in quantitative blood flow measurements. J Clin Ultrasound 20:187–193Google Scholar
  5. 5.
    Caroff J, Bière L, Trebuchet G et al (2012) Applications of phase-contrast velocimetry sequences in cardiovascular imaging. Diagn Interv Imaging 93:159–170.  https://doi.org/10.1016/j.diii.2012.01.008 CrossRefPubMedGoogle Scholar
  6. 6.
    Burris NS, Hope MD (2015) 4D flow MRI applications for aortic disease. Magn Reson Imaging Clin N Am 23:15–23.  https://doi.org/10.1016/j.mric.2014.08.006 CrossRefPubMedGoogle Scholar
  7. 7.
    Fratz S, Chung T, Greil GF et al (2013) Guidelines and protocols for cardiovascular magnetic resonance in children and adults with congenital heart disease: SCMR expert consensus group on congenital heart disease. J Cardiovasc Magn Reson 15:51.  https://doi.org/10.1186/1532-429X-15-51 CrossRefPubMedPubMedCentralGoogle Scholar
  8. 8.
    Recio Rodríguez M, Martínez de Vega V, Cano Alonso R, Carrascoso Arranz J, Martínez Ten P, Pérez Pedregosa J (2012) MR imaging of thoracic abnormalities in the fetus. Radiographics 32:E305–E321.  https://doi.org/10.1148/rg.327125053
  9. 9.
    Furey EA, Bailey AA, Twickler DM (2016) Fetal MR imaging of gastrointestinal abnormalities. Radiographics 36:904–917.  https://doi.org/10.1148/rg.2016150109 CrossRefPubMedGoogle Scholar
  10. 10.
    Gat I, Hoffmann C, Shashar D et al (2016) Fetal brain MRI: novel classification and contribution to sonography. Ultraschall Med 37:176–184.  https://doi.org/10.1055/s-0034-1384935 CrossRefPubMedGoogle Scholar
  11. 11.
    Kording F, Yamamura J, de Sousa MT et al (2018) Dynamic fetal cardiovascular magnetic resonance imaging using Doppler ultrasound gating. J Cardiovasc Magn Reson 20:17.  https://doi.org/10.1186/s12968-018-0440-4 CrossRefPubMedPubMedCentralGoogle Scholar
  12. 12.
    International Society of Ultrasound in Obstetrics and Gynecology, Carvalho JS, Allan LD et al (2013) ISUOG Practice Guidelines (updated): sonographic screening examination of the fetal heart. Ultrasound Obstet Gynecol 41:348–359.  https://doi.org/10.1002/uog.12403 CrossRefPubMedGoogle Scholar
  13. 13.
    Lotz J, Meier C, Leppert A, Galanski M (2002) Cardiovascular flow measurement with phase-contrast MR imaging: basic facts and implementation. Radiographics 22:651–671.  https://doi.org/10.1148/radiographics.22.3.g02ma11651 CrossRefPubMedGoogle Scholar
  14. 14.
    Powell AJ, Geva T (2000) Blood flow measurement by magnetic resonance imaging in congenital heart disease. Pediatr Cardiol 21:47–58.  https://doi.org/10.1007/s002469910007 CrossRefPubMedGoogle Scholar
  15. 15.
    Rebergen SA, Chin JG, Ottenkamp J, van der Wall EE, de Roos A (1993) Pulmonary regurgitation in the late postoperative follow-up of tetralogy of Fallot. Volumetric quantitation by nuclear magnetic resonance velocity mapping. Circulation 88:2257–2266Google Scholar
  16. 16.
    Jansz MS, Seed M, van Amerom JF et al (2010) Metric optimized gating for fetal cardiac MRI. Magn Reson Med 64:1304–1314.  https://doi.org/10.1002/mrm.22542 CrossRefPubMedGoogle Scholar
  17. 17.
    Roy CW, Seed M, van Amerom JF et al (2013) Dynamic imaging of the fetal heart using metric optimized gating. Magn Reson Med 70:1598–1607.  https://doi.org/10.1002/mrm.24614 CrossRefPubMedGoogle Scholar
  18. 18.
    Seed M, van Amerom JF, Yoo SJ et al (2012) Feasibility of quantification of the distribution of blood flow in the normal human fetal circulation using CMR: a cross-sectional study. J Cardiovasc Magn Reson 14:79.  https://doi.org/10.1186/1532-429X-14-79 CrossRefPubMedPubMedCentralGoogle Scholar
  19. 19.
    Prsa M, Sun L, van Amerom J et al (2014) Reference ranges of blood flow in the major vessels of the normal human fetal circulation at term by phase-contrast magnetic resonance imaging. Circ Cardiovasc Imaging 7:663–670.  https://doi.org/10.1161/CIRCIMAGING.113.001859 CrossRefPubMedGoogle Scholar
  20. 20.
    Tsai-Goodman B, Zhu MY, Al-Rujaib M, Seed M, Macgowan CK (2015) Foetal blood flow measured using phase contrast cardiovascular magnetic resonance--preliminary data comparing 1.5 T with 3.0 T. J Cardiovasc Magn Reson 17:30.  https://doi.org/10.1186/s12968-015-0132-2
  21. 21.
    Feinstein JA, Epstein FH, Arai AE et al (1997) Using cardiac phase to order reconstruction (CAPTOR): a method to improve diastolic images. J Magn Reson Imaging 7:794–798CrossRefGoogle Scholar
  22. 22.
    Hoerr V, Nagelmann N, Nauerth A et al (2013) Cardiac-respiratory self-gated cine ultra-short echo time (UTE) cardiovascular magnetic resonance for assessment of functional cardiac parameters at high magnetic fields. J Cardiovasc Magn Reson 15:59.  https://doi.org/10.1186/1532-429X-15-59 CrossRefPubMedPubMedCentralGoogle Scholar
  23. 23.
    Haris K, Hedström E, Bidhult S et al (2017) Self-gated fetal cardiac MRI with tiny golden angle iGRASP: a feasibility study. J Magn Reson Imaging 46:207–217.  https://doi.org/10.1002/jmri.25599 CrossRefPubMedGoogle Scholar
  24. 24.
    Chaptinel J, Yerly J, Mivelaz Y et al (2017) Fetal cardiac cine magnetic resonance imaging in utero. Sci Rep 7:15540.  https://doi.org/10.1038/s41598-017-15701-1 CrossRefPubMedPubMedCentralGoogle Scholar
  25. 25.
    Seitz J, Strotzer M, Wild T et al (2001) Quantification of blood flow in the carotid arteries: comparison of Doppler ultrasound and three different phase-contrast magnetic resonance imaging sequences. Invest Radiol 36:642–647CrossRefGoogle Scholar
  26. 26.
    Balédent O, Fin L, Khuoy L et al (2006) Brain hydrodynamics study by phase-contrast magnetic resonance imaging and transcranial color doppler. J Magn Reson Imaging 24:995–1004.  https://doi.org/10.1002/jmri.20722 CrossRefPubMedGoogle Scholar
  27. 27.
    Shibata M, Sakuma H, Isaka N, Takeda K, Higgins CB, Nakano T (1999) Assessment of coronary flow reserve with fast cine phase contrast magnetic resonance imaging: comparison with measurement by Doppler guide wire. J Magn Reson Imaging 10:563–568Google Scholar
  28. 28.
    Stadlbauer A, van der Riet W, Globits S, Crelier G, Salomonowitz E (2009) Accelerated phase-contrast MR imaging: comparison of k-t BLAST with SENSE and Doppler ultrasound for velocity and flow measurements in the aorta. J Magn Reson Imaging 29:817–824.  https://doi.org/10.1002/jmri.21706
  29. 29.
    Engvall J, Sjöqvist L, Nylander E, Thuomas KA, Wranne B (1995) Biplane transoesophageal echocardiography, transthoracic Doppler, and magnetic resonance imaging in the assessment of coarctation of the aorta. Eur Heart J 16:1399–1409Google Scholar
  30. 30.
    Macgowan CK, Kellenberger CJ, Detsky JS, Roman K, Yoo SJ (2005) Real-time Fourier velocity encoding: an in vivo evaluation. J Magn Reson Imaging 21:297–304.  https://doi.org/10.1002/jmri.20266
  31. 31.
    Guedes-Martins L, Cunha A, Saraiva J et al (2014) Foetal aortic flow velocity waveforms in healthy and hypertensive pregnant women. Cardiovasc Ultrasound 12:1.  https://doi.org/10.1186/1476-7120-12-1 CrossRefPubMedPubMedCentralGoogle Scholar
  32. 32.
    Konje JC, Abrams K, Bell SC, de Chazal RC, Taylor DJ (2000) The application of color power angiography to the longitudinal quantification of blood flow volume in the fetal middle cerebral arteries, ascending aorta, descending aorta, and renal arteries during gestation. Am J Obstet Gynecol 182:393–400Google Scholar
  33. 33.
    Walther FJ, Siassi B, King J, Wu PY (1986) Blood flow in the ascending and descending aorta in term newborn infants. Early Hum Dev 13:21–25CrossRefGoogle Scholar
  34. 34.
    Marsál K, Lindblad A, Lingman G, Eik-Nes SH (1984) Blood flow in the fetal descending aorta; intrinsic factors affecting fetal blood flow, i.e. fetal breathing movements and cardiac arrhythmia. Ultrasound Med Biol 10:339–348CrossRefGoogle Scholar
  35. 35.
    Davidson S, Sokolover N, Erlich A, Litwin A, Linder N, Sirota L (2008) New and improved Israeli reference of birth weight, birth length, and head circumference by gestational age: a hospital-based study. Isr Med Assoc J 10:130–134Google Scholar
  36. 36.
    van Eyck J, Wladimiroff JW, Noordam MJ, Tonge HM, Prechtl HF (1985) The blood flow velocity waveform in the fetal descending aorta: its relationship to fetal behavioural states in normal pregnancy at 37-38 weeks. Early Hum Dev 12:137–143Google Scholar
  37. 37.
    Hecher K, Campbell S, Doyle P, Harrington K, Nicolaides K (1995) Assessment of fetal compromise by Doppler ultrasound investigation of the fetal circulation. Arterial, intracardiac, and venous blood flow velocity studies. Circulation 91:129–138Google Scholar
  38. 38.
    Morris RK, Malin G, Robson SC, Kleijnen J, Zamora J, Khan KS (2011) Fetal umbilical artery Doppler to predict compromise of fetal/neonatal wellbeing in a high-risk population: systematic review and bivariate meta-analysis. Ultrasound Obstet Gynecol 37:135–142.  https://doi.org/10.1002/uog.7767
  39. 39.
    Vaujois L, Boucoiran I, Preuss C et al (2017) Relationship between interatrial communication, ductus arteriosus, and pulmonary flow patterns in fetuses with transposition of the great arteries: prediction of neonatal desaturation. Cardiol Young 27:1280–1288.  https://doi.org/10.1017/S1047951117000087 CrossRefPubMedGoogle Scholar
  40. 40.
    Beattie M, Peyvandi S, Ganesan S, Moon-Grady A (2017) Toward improving the fetal diagnosis of coarctation of the aorta. Pediatr Cardiol 38:344–352.  https://doi.org/10.1007/s00246-016-1520-6 CrossRefPubMedGoogle Scholar
  41. 41.
    van Beek EJR, Kuhl C, Anzai Y et al (2018) Value of MRI in medicine: more than just another test? J Magn Reson Imaging  https://doi.org/10.1002/jmri.26211
  42. 42.
    Sarwar A, Boland G, Monks A, Kruskal JB (2015) Metrics for radiologists in the era of value-based health care delivery. Radiographics 35:866–876CrossRefGoogle Scholar

Copyright information

© European Society of Radiology 2019

Authors and Affiliations

  • B. P. Schoennagel
    • 1
  • J. Yamamura
    • 1
  • F. Kording
    • 1
  • R. Fischer
    • 1
    • 2
  • P. Bannas
    • 1
  • G. Adam
    • 1
  • H. Kooijman
    • 3
  • C. Ruprecht
    • 1
  • K. Fehrs
    • 1
  • M. Tavares de Sousa
    • 4
  1. 1.Department of Diagnostic and Interventional Radiology and Nuclear MedicineUniversity Medical Center Hamburg-EppendorfHamburgGermany
  2. 2.Department of Hematology/OncologyUCSF Benioff Children’s Hospital OaklandOaklandUSA
  3. 3.Philips GmbHHamburgGermany
  4. 4.Department of Obstetrics and Fetal MedicineUniversity Medical Center Hamburg-EppendorfHamburgGermany

Personalised recommendations