Magnetic resonance spectroscopy in posterior fossa tumours: the tumour spectroscopic signature may improve discrimination in adults among haemangioblastoma, ependymal tumours, medulloblastoma, and metastasis

  • Paloma Mora
  • Albert Pons
  • Mónica Cos
  • Angels Camins
  • Amadeo Muntané
  • Carles Aguilera
  • Carles Arús
  • Carles Majós
Magnetic Resonance



Assessing a posterior fossa tumour in an adult can be challenging. Metastasis, haemangioblastoma, ependymal tumours, and medulloblastoma are the most common diagnostic possibilities. Our aim was to evaluate the contribution of magnetic resonance spectroscopy (MRS) in the diagnosis of these entities.


We retrospectively evaluated 56 consecutive patients with a posterior fossa tumour and histological diagnosis of ependymal tumour, medulloblastoma, haemangioblastoma, and metastasis in which good-quality spectra at short (TE 30 ms) or/and intermediate (TE, 136 ms) TE were available. Spectra were compared using the Mann-Whitney U non-parametric test in order to select the spectral datapoints and the intensity ratios that showed significant differences between groups of lesions. Performance of these datapoints and their ratios were assessed with ROC curves.


The most characteristic signatures on spectroscopy were high choline (Cho) in medulloblastoma (p < 0.001), high myoinositol (mIns) in ependymal tumours (p < 0.05), and high lipids (LIP) in haemangioblastoma (p < 0.01) and metastasis (p < 0.01). Selected ratios between normalised intensity signals of resonances provided accuracy values between 79 and 95% for pairwise comparisons. Intensity ratio NI3.21ppm/3.55ppm provided satisfactory discrimination between medulloblastoma and ependymal tumours (accuracy, 92%), ratio NI2.11ppm/1.10ppm discriminated ependymal tumours from haemangioblastoma (accuracy, 94%), ratio NI3.21ppm/1.13ppm discriminated haemangioblastoma from medulloblastoma (accuracy, 95%), and ratio NI1.28ppm/2.02pmm discriminated haemangioblastoma from metastasis (accuracy, 83%).


MRS may improve the non-invasive diagnosis of posterior fossa tumours in adults.

Key Points

High choline suggests a medulloblastoma in a posterior fossa tumour.

High myoinositol suggests an ependymal lesion in a posterior fossa tumour.

High lipids suggest a metastasis or a haemangioblastoma in a posterior fossa tumour.


Magnetic resonance imaging Magnetic resonance spectroscopy Posterior fossa tumours Neoplasm metastasis 









Magnetic resonance spectroscopy




Normalised to unit length datapoint intensities



This work was partially funded by the Ministerio de Economía y Competitividad (MINECO) grant MOLIMAGLIO (SAF2014-52332-R). It was also funded by Centro de Investigación Biomédica en Red – Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN, []), an initiative of the Instituto de Salud Carlos III (Spain) co-funded by EU Fondo Europeo de Desarrollo Regional (FEDER).

Compliance with ethical standards


The scientific guarantor of this publication is Carlos Majós MD, PhD.

Conflict of interest

The authors of this manuscript declare no relationships with any companies, whose products or services may be related to the subject matter of the article.

Statistics and biometry

One of the authors has significant statistical expertise.

Informed consent

Written informed consent was obtained from all subjects (patients) in this study.

Ethical approval

Institutional Review Board approval was obtained.

Study subjects or cohorts overlap

Some study subjects or cohorts have been previously reported in:

a. Majós C, Alonso J, Aguilera C, et al (2003) Proton magnetic resonance spectroscopy (1H MRS) of human brain tumours: assessment of differences between tumour types and its applicability in brain tumour categorization. Eur Radio 13:582–91.

b. Mora P, Majós C, Castañer S, et al (2014) 1H-MRS is useful to reinforce the suspicion of primary central nervous system lymphoma prior to surgery. Eur Radiol 24:2895–905.

c. Majós C, Alonso J, Aguilera C, Serrallonga M, Acebes JJ, Arús C, Gili J. Adult primitive neuroectodermal tumour: Proton MR Spectroscopic findings with possible application for differential diagnosis. Radiology 2002;225:556–566.

d. Majós C, Julià-Sapé M, Alonso J, Serrallonga M, Aguilera C, Acebes JJ, Arús C, Gili J. Brain tumor classification by proton MR spectroscopy: comparison of diagnostic accuracy at short and long TE. AJNR Am J Neuroradiol 2004;25:1696–1704.

e. Majós C, Aguilera C, Cos M, Camins A, Candiota AP, Delgado-Goñi T, Samitier A, Castañer S, Sánchez JJ, Mato D, Acebes JJ, Arús C. In vivo proton magnetic resonance spectroscopy of intraventricular tumours of the Brain. Eur Radiol 2009;19:2049–2059.


• retrospective

• diagnostic or prognostic study/observational

• performed at one institution


  1. 1.
    Ostrom QT, Gittleman H, Liao P et al (2014) CBTRUS statistical report: primary brain and central nervous system tumors diagnosed in the United States in 2007-2011. Neuro Oncol 16:iv1–iv63CrossRefGoogle Scholar
  2. 2.
    Grossman R, Ram Z (2016) Posterior fossa intra-axial tumors in adults. World Neurosurgery 88:140–145CrossRefGoogle Scholar
  3. 3.
    Eichler AF, Loeffler JS (2007) Multidisciplinary management of brain metastasis. Oncologist 12:884–898CrossRefGoogle Scholar
  4. 4.
    North C, Segall HD, Stanley P, Zee CS, Ahmadi J, McComb JG (1985) Early detection on intracranial seeding from medulloblastoma. AJNR Am J Neuroradiol 6:11–13PubMedGoogle Scholar
  5. 5.
    Kanno H, Kobayashi N, Nakanowatari S (2014) Pathological and clinical features and management of central nervous system hemangioblastomas in von Hippel-Lindau disease. J Kidney Cancer VHL 1:46–55CrossRefGoogle Scholar
  6. 6.
    Slater A, Moore NR, Huson SM (2003) The natural history of cerebellar hemangioblastomas in von Hippel-Lindau disease. AJNR Am J Neuroradiol 24:1570–1574PubMedGoogle Scholar
  7. 7.
    Dowling C, Bollen AW, Noworolski SM et al (2001) Preoperative proton MR spectroscopy imaging of brain tumors: correlation with histopathologic analysis of resection specimens. AJNR Am J Neuroradiol 22:604–612PubMedGoogle Scholar
  8. 8.
    Howe FA, Barton SJ, Cudlip SA et al (2003) Metabolic profiles of human brain tumors using quantitative in vivo 1H magnetic resonance spectroscopy. Magn Reson Med 49:223–232CrossRefGoogle Scholar
  9. 9.
    Majós C, Julià-Sapé M, Alonso J et al (2004) Brain tumor classification by proton MR spectroscopy: comparison of diagnostic accuracy at short and long TE. AJNR Am J Neuroradiol 25:1696–1704PubMedGoogle Scholar
  10. 10.
    Harris LM, Davies N, Macpherson L et al (2007) The use of short TE 1H MRS for childhood cerebellar tumours prior to histopathological diagnosis. Pediatr Radiol 37:1101–1109CrossRefGoogle Scholar
  11. 11.
    Vicente J, Fuster-Garcia E, Tortajada S et al (2013) Accurate classification of childhood brain tumours by in vivo 1H MRS- a multi-centre study. Eur J Cancer 49:658–667CrossRefGoogle Scholar
  12. 12.
    Peet AC, Davies NP, Ridley L et al (2017) Magnetic resonance spectroscopy suggests key differences in the metastatic behavior of medulloblastoma. Eur J Cancer 43:1037–1044CrossRefGoogle Scholar
  13. 13.
    Davies NP, Wilson M, Harris LM et al (2008) Identification and characterization of childhood cerebellar tumours by in vivo proton MRS. NMR Biomed 21:908–918CrossRefGoogle Scholar
  14. 14.
    Scheneider JF, Confort-Gouny S, Viola A et al (2007) Multiparametric differentiation of posterior fossa tumors in children using diffusion-weighted imaging and short echo-time 1H-MR spectroscopy. J Magn Reson Imaging 26:1390–1398CrossRefGoogle Scholar
  15. 15.
    Plaza MJ, Borja MJ, Altman N, Saigal G (2013) Conventional and advanced MRI features of pediatric intracranial tumors: posterior fossa and suprasellar tumors. AJR Am J Roentgenol 200:1115–1124CrossRefGoogle Scholar
  16. 16.
    Panigrahy A, Krieger MD, Gonzalez-Gomez I et al (2006) Quantitative short echo time 1H-MR spectroscopy of untreated pediatric brain tumors: preoperative diagnosis and characterization. AJNR Am J Neuroradiol 27:560–572PubMedGoogle Scholar
  17. 17.
    Moreno-Torres A, Martínez-Pérez I, Baquero M et al (2004) Taurine detection by proton magnetic resonance spectroscopy in medulloblastoma: contribution to noninvasive differential diagnosis with cerebellar astrocytoma. Neurosurgery 55:824–829CrossRefGoogle Scholar
  18. 18.
    Majós C, Alonso J, Aguilera C et al (2002) Adult primitive neuroectodermal tumor: proton MR spectroscopic findings with possible application for differential diagnosis. Radiology 225:556–566CrossRefGoogle Scholar
  19. 19.
    Stefan D, Di Cesare F, Andrasescu A et al (2009) Quantification of magnetic resonance spectroscopy signals: the jMRUI software package. Meas Sci Technol 20:104–135CrossRefGoogle Scholar
  20. 20.
    Tate AR, Underwood J, Acosta DM et al (2006) Development of a decision support system for diagnosis and grading of brain tumours using in vivo magnetic resonance single voxel spectra. NMR Biomed 19:411–434CrossRefGoogle Scholar
  21. 21.
    Hochberg Y, Tamhane AC (1987) Multiple comparisons procedures. Wiley, New YorkCrossRefGoogle Scholar
  22. 22.
    Lehman NL (2008) Central nervous system tumors with ependymal features: a broadened spectrum of primarily ependymal differentiation? J Neuropathol Exp Neurol 67:177–188CrossRefGoogle Scholar
  23. 23.
    Ho VB, Smirniotopoulus JG, Murpphy FM, Rushing EJ (1992) Radiologic-pathologic correlation: haemangioblastoma. AJNR Am J Neuroradiol 13:1343–1352PubMedGoogle Scholar
  24. 24.
    Remke M, Hielscher T, Northcott PA et al (2011) Adult medulloblastoma comprises three major molecular variants. J Clin Oncol 29:2717–2723CrossRefGoogle Scholar
  25. 25.
    Bourgouin PM, Tampieri D, Grahovac SZ, Léger C, Del Carpio R, Melançon D (1992) CT and MR findings in adults with cerebellar medulloblastoma: comparison with findings in children. AJR Am J Roentgenol 159:609–612CrossRefGoogle Scholar
  26. 26.
    Armington WG, Osborn AG, Cubberley DA et al (1985) Supratentorial ependymoma: CT appearance. Radiology 157:367–372CrossRefGoogle Scholar
  27. 27.
    Shih RY, Smirniotopoulus JG (2016) Posterior fossa tumors in adult patients. Neuroimaging Clin N Am 26:493–510CrossRefGoogle Scholar
  28. 28.
    Miller BL, Chang L, Booth R et al (1996) In vivo 1H MRS choline: correlation with in vitro chemistry/histology. Life Sci 58:1929–1935Google Scholar
  29. 29.
    Verma A, Kumar I, Verma N, Aggarwal P, Ojha R (2016) Magnetic resonance spectroscopy-revisiting the biochemical and molecular milieu of brain tumors. BBA Clin 5:170–178CrossRefGoogle Scholar
  30. 30.
    Hattingen E, Raab P, Franz K, Zanella FE, Lanfermann H, Ulrich P (2008) Myo-inositol: a marker of reactive astrogliosis in glial tumors? NMR Biomed 21:233–241CrossRefGoogle Scholar
  31. 31.
    Candiota AP, Majós C, Julià-Sapé M et al (2011) Non-invasive grading of astrocytic tumours from the relative contents of myo-inositol and glycine measured in vivo MRS. JBR-BTR 94:319–329PubMedGoogle Scholar

Copyright information

© European Society of Radiology 2018

Authors and Affiliations

  1. 1.Department of RadiologyHospital Universitari de BellvitgeL’Hospitalet de LlobregatSpain
  2. 2.Department of Radiology, Institut de Diagnòstic per la Imatge (IDI), Centre BellvitgeHospital Universitari de BellvitgeL’Hospitalet de LlobregatSpain
  3. 3.Centro de Investigación Biomédica en Red en BioingenieríaBiomateriales y Nanomedicina (CIBER-BBN)Cerdanyola del VallèsSpain
  4. 4.Departament de Bioquímica i Biologia Molecular, Unitat de Bioquímica de Biociències, Edifici CsUniversitat Autònoma de BarcelonaCerdanyola del VallèsSpain
  5. 5.Institut de Biotecnologia i de Biomedicina (IBB)Universitat Autònoma de BarcelonaCerdanyola del VallèsSpain

Personalised recommendations