Advertisement

Accuracy of iodine density thresholds for the separation of vertebral bone metastases from healthy-appearing trabecular bone in spectral detector computed tomography

  • Jan Borggrefe
  • Victor-Frederic Neuhaus
  • Markus Le Blanc
  • Nils Grosse Hokamp
  • Volker Maus
  • Anastasios Mpotsaris
  • Simon Lennartz
  • Daniel Pinto dos Santos
  • David Maintz
  • Nuran Abdullayev
Musculoskeletal
  • 17 Downloads

Abstract

Purpose

To evaluate quantitative iodine density mapping (IDM) with spectral detector computed tomography (SDCT) as a quantitative biomarker for separation of vertebral trabecular bone metastases (BM) from healthy-appearing trabecular bone (HTB).

Materials and methods

IRB-approved retrospective single-center-study of portal venous SDCT datasets acquired between June 2016 and March 2017. Inclusion of 43 consecutive cancer patients with BM and 40 without. Target lesions and non-affected control vertebrae were defined using follow-up imaging, MRI, and/or bone scintigraphy. ID and standard deviation were determined with ROI measures by two readers in (a) bone metastases, (b) HTB of BM patients and controls, and (c) ID of various vessels. Volumetric bone mineral density (vBMD) of the lumbar spine and age were recorded. Multivariate ROC analyses und Wilcoxon test were used to determine thresholds for separation of BM and HTB. p < 0.05 was considered significant.

Results

ID measurements of 40 target lesions and 83 reference measurements of HTB were acquired. Age (p < 0.0001) and vBMD (p < 0.05) affected ID measurements independently in multivariate models. There were significant differences of ID between metastases (n = 43) and HTB ID (n = 124; mean 5.5 ± 0.9 vs. 3.5 ± 0.9; p < 0.0001), however, with considerable overlap. In univariate analysis, increased ID discriminated bone lesions (AUC 0.90) with a maximum combined specificity/sensitivity of 77.5%/90.7% when applying a threshold of 4.5 mg/ml. Multivariate regression models improved significantly when considering vBMD, the noise of ID, and vertebral venous ID (AUC 0.98).

Conclusion

IDM of SDCT yielded a statistical separation of vertebral bone lesions and HTB. Adjustment for confounders such as age and lumbar vBMD as well as for vertebral venous ID and lesion heterogeneity improved discrimination of trabecular lesions.

Key Points

• SDCT iodine density mapping provides the possibility for quantitative analysis of iodine uptake in tissue, which allows to differentiate bone lesions from healthy bone marrow.

• Age and vBMD have a significant impact on iodine density measurements.

• Iodine density measured in SDCT yielded highest sensitivity and specificity for the statistical differentiation of vertebral trabecular metastases and healthy trabecular bone using an iodine density threshold of 4.5 mg/ml (most performant)–5.0 mg/ml (optimized for specificity).

Keywords

Bone Tomography Iodine Diagnosis Neoplasm metastasis 

Abbreviations

CT

Computed tomography

BMD

Bone mineral density

BM

Bone metastases

HTB

Healthy trabecular bone

ID

Iodine density

IDM

Iodine density mapping

SDCT

Spectral detector computed tomography

UICC

Union for International Cancer Control

WHO

World Health Organization

Notes

Funding

The authors state that this work has not received any funding.

Compliance with ethical standards

Guarantor

The scientific guarantor of this publication is Jan Borggrefe.

Conflict of interest

The authors of this manuscript declare relationships with the following companies: D.M. and J.B. received honorarium from Philips for scientific lectures. The authors have no conflicts of interest.

Statistics and biometry

One of the authors has significant statistical expertise.

Informed consent

Written informed consent was waived by the Institutional Review Board.

Ethical approval

Institutional Review Board approval was obtained.

Methodology

• Retrospective

• Cross sectional study

• Performed at one institution

Supplementary material

330_2018_5843_MOESM1_ESM.docx (111 kb)
ESM 1 (DOCX 110 kb)

References

  1. 1.
    White AP, Kwon BK, Lindskog DM, Friedlaender GE, Grauer JN (2006) Metastatic disease of the spine. J Am Acad Orthop Surg 14:587–598Google Scholar
  2. 2.
    Guillevin R, Vallee JN, Lafitte F, Menuel C, Duverneuil NM, Chiras J (2007) Spine metastasis imaging: review of the literature. J Neuroradiol 34:311–321Google Scholar
  3. 3.
    Roodman GD (2004) Mechanisms of bone metastasis. N Engl J Med 350:1655–1664.  https://doi.org/10.1056/NEJMra030831 CrossRefPubMedGoogle Scholar
  4. 4.
    Reddi AH, Roodman D, Freeman C, Mohla S (2003) Mechanisms of tumor metastasis to the bone: challenges and opportunities. J Bone Miner Res 18:190–194.  https://doi.org/10.1359/jbmr.2003.18.2.190 CrossRefPubMedGoogle Scholar
  5. 5.
    Toth DF, Töpker M, Mayerhöfer ME et al (2013) Rapid detection of bone metastasis at thoracoabdominal CT: accuracy and efficiency of a new visualization algorithm. Radiology 270:130789.  https://doi.org/10.1148/radiol.13130789 CrossRefGoogle Scholar
  6. 6.
    Horger M, Thaiss WM, Wiesinger B et al (2017) Longitudinal computed tomography monitoring of pelvic bones in patients with breast cancer using automated bone subtraction software. Invest Radiol 52:288–294.  https://doi.org/10.1097/RLI.0000000000000343 CrossRefPubMedGoogle Scholar
  7. 7.
    Mundy GR (2002) Metastasis to bone: causes, consequences and therapeutic opportunities. Nat Rev Cancer 2:584–593.  https://doi.org/10.1038/nrc867 CrossRefPubMedGoogle Scholar
  8. 8.
    Rybak LD, Rosenthal DI (2001) Radiological imaging for the diagnosis of bone metastases. Q J Nucl Med 45:53–64PubMedGoogle Scholar
  9. 9.
    Heindel W, Gübitz R, Vieth V, Weckesser M, Schober O, Schäfers M (2014) The diagnostic imaging of bone metastases. Dtsch Arztebl Int 111:741–747.  https://doi.org/10.3238/arztebl.2014.0741
  10. 10.
    Silva AC, Morse BG, Hara AK, Paden RG, Hongo N, Pavlicek W (2011) Dual-energy (spectral) CT: applications in abdominal imaging. Radiographics 31:1031–1046.  https://doi.org/10.1148/rg.314105159
  11. 11.
    McCollough CH, Leng S, Yu L, Fletcher JG (2015) Dual- and multi-energy CT: principles, technical approaches, and clinical applications. Radiology 276:637–653.  https://doi.org/10.1148/radiol.2015142631 CrossRefPubMedPubMedCentralGoogle Scholar
  12. 12.
    He P, Wei B, Cong W, Wang G (2012) Optimization of K-edge imaging with spectral CT. Med Phys 39:6572–6579.  https://doi.org/10.1118/1.4754587 CrossRefPubMedPubMedCentralGoogle Scholar
  13. 13.
    Zheng S, Dong Y, Miao Y et al (2014) Differentiation of osteolytic metastases and Schmorl’s nodes in cancer patients using dual-energy CT: advantage of spectral CT imaging. Eur J Radiol 83:1216–1221.  https://doi.org/10.1016/j.ejrad.2014.02.003 CrossRefPubMedGoogle Scholar
  14. 14.
    Dong Y, Zheng S, Machida H et al (2015) Differential diagnosis of osteoblastic metastases from bone islands in patients with lung cancer by single-source dual-energy CT: advantages of spectral CT imaging. Eur J Radiol 84:901–907.  https://doi.org/10.1016/j.ejrad.2015.01.007 CrossRefPubMedGoogle Scholar
  15. 15.
    Neuhaus V, Abdullayev N, Große Hokamp N et al (2017) Improvement of image quality in unenhanced dual-layer CT of the head using virtual monoenergetic images compared. Invest Radiol 52:470–476.  https://doi.org/10.1097/RLI.0000000000000367
  16. 16.
    Neuhaus V, Große Hokamp N, Abdullayev N et al (2017) Metal artifact reduction by dual-layer computed tomography using virtual monoenergetic images. Eur J Radiol 93.  https://doi.org/10.1016/j.ejrad.2017.05.013
  17. 17.
    Borggrefe J, Kottlors J, Mirza M et al (2017) Differentiation of clot composition using conventional and dual-energy computed tomography. Clin Neuroradiol.  https://doi.org/10.1007/s00062-017-0599-3
  18. 18.
    Hanahan D, Weinberg RA (2011) Hallmarks of cancer: the next generation. Cell 144:646–674CrossRefGoogle Scholar
  19. 19.
    Joyce JA, Pollard JW (2009) Microenvironmental regulation of metastasis. Nat Rev Cancer 9:239–252.  https://doi.org/10.1038/nrc2618 CrossRefGoogle Scholar
  20. 20.
    Dvorak HF, Detmar M, Claffey KP, Nagy JA, van de Water L, Senger DR (1995) Vascular permeability factor/ vascular endothelial growth factor: an important mediator of angiogenesis in malignancy and inflammation. Int Arch Allergy Immunol 107:233–235.  https://doi.org/10.1159/000236988
  21. 21.
    Vaupel P, Kallinowski F, Okunieff P (1989) Blood flow, oxygen and nutrient supply, and metabolic microenvironment of human tumors: a review. Cancer Res 49:6449–6465Google Scholar
  22. 22.
    Lee TY, Purdie TG, Stewart E (2003) CT imaging of angiogenesis. Q J Nucl Med 47:171–187.  https://doi.org/10.1016/j.cpet.2009.04.011 CrossRefPubMedGoogle Scholar
  23. 23.
    Axel L (1980) Cerebral blood flow determination by rapid-sequence computed tomography: theoretical analysis. Radiology 137:679–686.  https://doi.org/10.1148/radiology.137.3.7003648 CrossRefPubMedGoogle Scholar
  24. 24.
    Miles KA (1991) Measurement of tissue perfusion by dynamic computed tomography. Br J Radiol 64:409–412.  https://doi.org/10.1259/0007-1285-64-761-409 CrossRefPubMedGoogle Scholar
  25. 25.
    Eisenhauer EA, Therasse P, Bogaerts J et al (2009) New response evaluation criteria in solid tumours: revised RECIST guideline (version 1.1). Eur J Cancer 45:228–247.  https://doi.org/10.1016/j.ejca.2008.10.026 CrossRefGoogle Scholar
  26. 26.
    Neuhaus V, Abdullayev N, Hellmich M et al (2016) Association of quality and QUANTITY of bone metastases and computed tomography volumetric bone mineral density with prevalence of vertebral fractures in breast cancer patients. Clin Breast Cancer.  https://doi.org/10.1016/j.clbc.2016.05.010
  27. 27.
    Mueller DK, Kutscherenko A, Bartel H, Vlassenbroek A, Ourednicek P, Erckenbrecht J (2011) Phantom-less QCT BMD system as screening tool for osteoporosis without additional radiation. Eur J Radiol 79:375–381.  https://doi.org/10.1016/j.ejrad.2010.02.008
  28. 28.
    DeLong ER, DeLong DM, Clarke-Pearson DL (1988) Comparing the areas under two or more correlated receiver operating characteristic curves: a nonparametric approach. Biometrics 44:837.  https://doi.org/10.2307/2531595 CrossRefPubMedPubMedCentralGoogle Scholar
  29. 29.
    Pelgrim GJ, van Hamersvelt RW, Willemink MJ et al (2017) Accuracy of iodine quantification using dual energy CT in latest generation dual source and dual layer CT. Eur Radiol 27:3904–3912.  https://doi.org/10.1007/s00330-017-4752-9 CrossRefPubMedPubMedCentralGoogle Scholar
  30. 30.
    Folkman J (1990) What is the evidence that tumors are angiogenesis dependent? J Natl Cancer Inst 82:4–7CrossRefPubMedGoogle Scholar

Copyright information

© European Society of Radiology 2018

Authors and Affiliations

  • Jan Borggrefe
    • 1
  • Victor-Frederic Neuhaus
    • 1
  • Markus Le Blanc
    • 1
  • Nils Grosse Hokamp
    • 1
  • Volker Maus
    • 1
  • Anastasios Mpotsaris
    • 1
  • Simon Lennartz
    • 1
  • Daniel Pinto dos Santos
    • 1
  • David Maintz
    • 1
  • Nuran Abdullayev
    • 1
  1. 1.Institut für Diagnostische und Interventionelle RadiologieUniklinik KölnKölnGermany

Personalised recommendations