Advertisement

Cardio-pulmonary MRI for detection of treatment response after a single BPA treatment session in CTEPH patients

  • Christian Schoenfeld
  • Jan B. Hinrichs
  • Karen M. Olsson
  • Martin-Alexander Kuettner
  • Julius Renne
  • Till Kaireit
  • Christoph Czerner
  • Frank Wacker
  • Marius M. Hoeper
  • Bernhard C. Meyer
  • Jens Vogel-Claussen
Chest

Abstract

Objectives

Chronic thromboembolic pulmonary hypertension (CTEPH) can be treated with balloon pulmonary angioplasty (BPA) in inoperable patients. Sensitive non-invasive imaging methods are missing to detect treatment response after a single BPA treatment session. Therefore, the aim of this study was to measure treatment response after a single BPA session using cardio-pulmonary MRI.

Materials and methods

Overall, 29 patients with CTEPH were examined with cardio-pulmonary MRI before and 62 days after their initial BPA session. Pulmonary blood flow (PBF), first-pass bolus kinetic parameters, and biventricular mass and function were determined. Multiple linear regression analysis was implemented to estimate the relationship of PBF change in the treated lobe with treatment change of full width at half maximum (FWHM), cardiac output (CO), ventricular mass index (VMI), pulmonary transit time (PTT) and PBF change in the non-treated lobes. Paired Wilcoxon rank sum test and Spearman rho correlation were used.

Results

After BPA regional PBF increased in the treated lobe (p < 0.0001) as well as in non-treated lobes (p = 0.015). PBF treatment changes in the treated lobe were significantly larger compared with the non-treated lobes (p = 0.0049). Change in NT proBNP, MRI-derived mean pulmonary artery pressure (mPAP), PTT, FWHM, right ventricular (RV) ejection fraction, RV stroke volume, CO, VMI and PBF in the non-treated lobes correlated with PBF change in the treated lobe (p < 0.05). PBF changes in the treated lobe were independently predicted by PTT as well as PBF change in the non-treated lobes.

Conclusion

Cardio-pulmonary MRI detects and quantifies treatment response after a single BPA treatment session.

Key Points

Two months after BPA regional parenchymal pulmonary perfusion (PBF) increased in the total lung parenchyma (p = 0.005), the treated lobes (p < 0.0001) and non-treated lobes (p = 0.015).

The PBF treatment changes in the treated lobe were significantly larger than in the non-treated lobes (p = 0.0049).

Change in NT proBNP, MRI-derived mean pulmonary artery pressure, pulmonary transit time, full width at half maximum, right ventricular (RV) ejection fraction, RV stroke volume, cardiac output, ventricular mass index and PBF in the non-treated lobes correlated with PBF change in the treated lobe (p < 0.05).

Keywords

Pulmonary hypertension Balloon angioplasty Perfusion Heart Magnetic resonance imaging 

Abbreviations

6MWD

Six-minute walking distance

BPA

Balloon pulmonary angioplasty

BSA

Body surface area

CO

Cardiac output

CTEPH

Chronic thromboembolic pulmonary hypertension

DCE

Dynamic contrast enhanced

EDV

End-diastolic volume

EF

Ejection fraction

ESV

End-systolic volume

FWHM

Full width at half maximum

LV

Left ventricular

mPAP

Mean pulmonary artery pressure

NT-proBNP

N-terminal pro B-type natriuretic peptide

NYHA FC

New York Heart Association functional classification

PBF

Pulmonary blood flow

PE

Pulmonary embolism

PEA

Pulmonary endarterectomy

PH

Pulmonary hypertension

PTT

Pulmonary transit time

PVR

Pulmonary vascular resistance

RHC

Right-sided heart catheterization

RV

Right ventricular

SV

Stroke volume

TTP

Time to peak

TWIST

Time-resolved angiography with stochastic trajectories

VMI

Ventricular mass index

Notes

Funding

This study has received funding from the German Center for Lung Research (DZL).

Compliance with ethical standards

Guarantor

The scientific guarantor of this publication is Prof. Dr. Jens Vogel-Claussen.

Conflict of interest

The authors of this manuscript declare no relationships with any companies, whose products or services may be related to the subject matter of the article.

Statistics and biometry

One of the authors has significant statistical expertise.

Informed consent

Written informed consent was obtained from all subjects (patients) in this study.

Ethical approval

Institutional Review Board approval was obtained.

Methodology

• retrospective

• observational

• performed at one institution

References

  1. 1.
    Olsson KM, Wiedenroth CB, Kamp JC et al (2017) Balloon pulmonary angioplasty for inoperable patients with chronic thromboembolic pulmonary hypertension: the initial German experience. Eur Respir J 49:1602409.  https://doi.org/10.1183/13993003.02409-2016 CrossRefPubMedGoogle Scholar
  2. 2.
    Lang IM, Madani M (2014) Update on chronic thromboembolic pulmonary hypertension. Circulation 130:508–518.  https://doi.org/10.1161/CIRCULATIONAHA.114.009309 CrossRefPubMedGoogle Scholar
  3. 3.
    Hoeper MM, Madani MM, Nakanishi N, Meyer B, Cebotari S, Rubin LJ (2014) Chronic thromboembolic pulmonary hypertension. Lancet Respir Med 2:573–582.  https://doi.org/10.1016/S2213-2600(14)70089-X CrossRefGoogle Scholar
  4. 4.
    Kim NH, Delcroix M, Jenkins DP et al (2013) Chronic thromboembolic pulmonary hypertension. J Am Coll Cardiol 62:D92–D99.  https://doi.org/10.1016/j.jacc.2013.10.024 CrossRefPubMedGoogle Scholar
  5. 5.
    Pepke-Zaba J, Delcroix M, Lang I et al (2011) Chronic thromboembolic pulmonary hypertension (CTEPH): results from an international prospective registry. Circulation 124:1973–1981.  https://doi.org/10.1161/CIRCULATIONAHA.110.015008 CrossRefGoogle Scholar
  6. 6.
    Hoeper MM (2016) Residual Pulmonary hypertension after pulmonary endarterectomy: the fog is clearing.  https://doi.org/10.1161/CIRCULATIONAHA.116.022595 CrossRefGoogle Scholar
  7. 7.
    Hinrichs JB, Renne J, Hoeper MM, Olsson KM, Wacker FK, Meyer BC (2016) Balloon pulmonary angioplasty: applicability of C-Arm CT for procedure guidance. Eur Radiol 26:4064–4071.  https://doi.org/10.1007/s00330-016-4280-z CrossRefGoogle Scholar
  8. 8.
    Sato H, Ota H, Sugimura K et al (2016) Balloon pulmonary angioplasty improves biventricular functions and pulmonary flow in chronic thromboembolic pulmonary hypertension. Circ J 80:1470–1477.  https://doi.org/10.1253/circj.CJ-15-1187 CrossRefGoogle Scholar
  9. 9.
    Ogo T, Fukuda T, Tsuji A et al (2017) Efficacy and safety of balloon pulmonary angioplasty for chronic thromboembolic pulmonary hypertension guided by cone-beam computed tomography and electrocardiogram-gated area detector computed tomography. Eur J Radiol 89:270–276.  https://doi.org/10.1016/j.ejrad.2016.12.013 CrossRefPubMedGoogle Scholar
  10. 10.
    Mizoguchi H, Ogawa A, Munemasa M, Mikouchi H, Ito H, Matsubara H (2012) Refined balloon pulmonary angioplasty for inoperable patients with chronic thromboembolic pulmonary hypertension. Circ Cardiovasc Interv 5:748–755.  https://doi.org/10.1161/CIRCINTERVENTIONS.112.971077 Google Scholar
  11. 11.
    Mayer E, Jenkins D, Lindner J et al (2011) Surgical management and outcome of patients with chronic thromboembolic pulmonary hypertension: Results from an international prospective registry. J Thorac Cardiovasc Surg 141:702–710.  https://doi.org/10.1016/j.jtcvs.2010.11.024 CrossRefPubMedGoogle Scholar
  12. 12.
    Jenkins DP, Madani M, Mayer E et al (2013) Surgical treatment of chronic thromboembolic pulmonary hypertension. Eur Respir J 41:735–742.  https://doi.org/10.1183/09031936.00058112 CrossRefPubMedGoogle Scholar
  13. 13.
    Shimura N, Kataoka M, Inami T et al (2015) Additional percutaneous transluminal pulmonary angioplasty for residual or recurrent pulmonary hypertension after pulmonary endarterectomy. Int J Cardiol 183C:138–142.  https://doi.org/10.1016/j.ijcard.2015.01.034 CrossRefGoogle Scholar
  14. 14.
    Inami T, Kataoka M, Shimura N et al (2014) Pressure-wire-guided percutaneous transluminal pulmonary angioplasty: a breakthrough in catheter-interventional therapy for chronic thromboembolic pulmonary hypertension. JACC Cardiovasc Interv 7:1297–1306.  https://doi.org/10.1016/j.jcin.2014.06.010 CrossRefPubMedGoogle Scholar
  15. 15.
    Champion HC, Michelakis ED, Hassoun PM (2009) Comprehensive invasive and noninvasive approach to the right ventricle-pulmonary circulation unit: state of the art and clinical and research implications. Circulation 120:992–1007.  https://doi.org/10.1161/CIRCULATIONAHA.106.674028 CrossRefPubMedGoogle Scholar
  16. 16.
    Roik M, Wretowski D, Łabyk A et al (2016) Refined balloon pulmonary angioplasty driven by combined assessment of intra-arterial anatomy and physiology - Multimodal approach to treated lesions in patients with non-operable distal chronic thromboembolic pulmonary hypertension - Technique, safety and efficacy of 50 consecutive angioplasties. Int J Cardiol 203:228–235.  https://doi.org/10.1016/j.ijcard.2015.10.116 CrossRefPubMedGoogle Scholar
  17. 17.
    Maschke SK, Renne J, Werncke T et al (2017) Chronic thromboembolic pulmonary hypertension: Evaluation of 2D-perfusion angiography in patients who undergo balloon pulmonary angioplasty. Eur Radiol 27:4264–4270.  https://doi.org/10.1007/s00330-017-4806-z CrossRefPubMedGoogle Scholar
  18. 18.
    Roik M, Wretowski D, Łabyk A et al (2017) Refined balloon pulmonary angioplasty-A therapeutic option in very elderly patients with chronic thromboembolic pulmonary hypertension. J Interv Cardiol.  https://doi.org/10.1111/joic.12387 CrossRefGoogle Scholar
  19. 19.
    Leuchte HH, El Nounou M, Tuerpe JC et al (2007) N-terminal pro-brain natriuretic peptide and renal insufficiency as predictors of mortality in pulmonary hypertension. Chest 131:402–409.  https://doi.org/10.1378/chest.06-1758 CrossRefGoogle Scholar
  20. 20.
    Nagaya N, Nishikimi T, Uematsu M et al (2000) Plasma brain natriuretic peptide as a prognostic indicator in patients with primary pulmonary hypertension. Circulation 102:865–870CrossRefGoogle Scholar
  21. 21.
    Simonneau G, D'Armini AM, Ghofrani HA et al (2016) Predictors of long-term outcomes in patients treated with riociguat for chronic thromboembolic pulmonary hypertension: data from the CHEST-2 open-label, randomised, long-term extension trial. Lancet Respir Med 4:372–380.  https://doi.org/10.1016/S2213-2600(16)30022-4 CrossRefPubMedGoogle Scholar
  22. 22.
    Suntharalingam J, Goldsmith K, Toshner M et al (2007) Role of NT-proBNP and 6MWD in chronic thromboembolic pulmonary hypertension. Respir Med 101:2254–2262.  https://doi.org/10.1016/j.rmed.2007.06.027 CrossRefPubMedGoogle Scholar
  23. 23.
    American College of Cardiology Foundation Task Force on Expert Consensus Documents, Hundley WG, Bluemke DA et al (2010) ACCF/ACR/AHA/NASCI/SCMR 2010 expert consensus document on cardiovascular magnetic resonance: a report of the American College of Cardiology Foundation Task Force on Expert Consensus Documents. J Am Coll Cardiol 55:2614–2662Google Scholar
  24. 24.
    Kreitner KF, Kunz RP, Ley S et al (2007) Chronic thromboembolic pulmonary hypertension—assessment by magnetic resonance imaging. Eur Radiol 17:11–21.  https://doi.org/10.1007/s00330-006-0327-x CrossRefPubMedGoogle Scholar
  25. 25.
    Peacock AJ, Vonk Noordegraaf A(2013) Cardiac magnetic resonance imaging in pulmonary arterial hypertension. Eur Respir Rev 22:526–534.  https://doi.org/10.1183/09059180.00006313 CrossRefPubMedGoogle Scholar
  26. 26.
    Jenkins D, Mayer E, Screaton N, Madani M (2012) State-of-the-art chronic thromboembolic pulmonary hypertension diagnosis and management. Eur Respir Rev 21:32–39.  https://doi.org/10.1183/09059180.00009211 CrossRefGoogle Scholar
  27. 27.
    Schoenfeld C, Cebotari S, Hinrichs J et al (2016) MR imaging-derived regional pulmonary parenchymal perfusion and cardiac function for monitoring patients with chronic thromboembolic pulmonary hypertension before and after pulmonary endarterectomy. Radiology 279:925–934.  https://doi.org/10.1148/radiol.2015150765 CrossRefPubMedGoogle Scholar
  28. 28.
    Galiè N, Humbert M, Vachiery JL et al (2016) 2015 ESC/ERS Guidelines for the diagnosis and treatment of pulmonary hypertension: The Joint Task Force for the Diagnosis and Treatment of Pulmonary Hypertension of the European Society of Cardiology (ESC) and the European Respiratory Society (ERS): Endorsed by: Association for European Paediatric and Congenital Cardiology (AEPC), International Society for Heart and Lung Transplantation (ISHLT). Eur Heart J 37:67–119.  https://doi.org/10.1093/eurheartj/ehv317 CrossRefGoogle Scholar
  29. 29.
    Hinrichs JB, Marquardt S, von Falck C et al (2016) Comparison of C-arm computed tomography and digital subtraction angiography in patients with chronic thromboembolic pulmonary hypertension. Cardiovasc Intervent Radiol 39:53–63.  https://doi.org/10.1007/s00270-015-1090-7 CrossRefPubMedGoogle Scholar
  30. 30.
    Rajaram S, Swift AJ, Telfer A et al (2013) 3D contrast-enhanced lung perfusion MRI is an effective screening tool for chronic thromboembolic pulmonary hypertension: results from the ASPIRE Registry. Thorax 68:677–678.  https://doi.org/10.1136/thoraxjnl-2012-203020 CrossRefPubMedGoogle Scholar
  31. 31.
    Sourbron S, Dujardin M, Makkat S, Luypaert R (2007) Pixel-by-pixel deconvolution of bolus-tracking data: optimization and implementation. Phys Med Biol 52:429–447.  https://doi.org/10.1088/0031-9155/52/2/009 CrossRefPubMedGoogle Scholar
  32. 32.
    Ingrisch M, Dietrich O, Attenberger UI et al (2010) Quantitative pulmonary perfusion magnetic resonance imaging: influence of temporal resolution and signal-to-noise ratio. Invest Radiol 45:7–14.  https://doi.org/10.1097/RLI.0b013e3181bc2d0c CrossRefPubMedGoogle Scholar
  33. 33.
    Skrok J, Shehata ML, Mathai S et al (2012) Pulmonary arterial hypertension: MR imaging-derived first-pass bolus kinetic parameters are biomarkers for pulmonary hemodynamics, cardiac function, and ventricular remodeling. Radiology 263:678–687.  https://doi.org/10.1148/radiol.12111001 CrossRefPubMedPubMedCentralGoogle Scholar
  34. 34.
    Vogel-Claussen J, Finn JP, Gomes AS et al (2006) Left ventricular papillary muscle mass: relationship to left ventricular mass and volumes by magnetic resonance imaging. J Comput Assist Tomogr 30:426–432CrossRefGoogle Scholar
  35. 35.
    Ryan T, Petrovic O, Dillon JC, Feigenbaum H, Conley MJ, Armstrong WF (1985) An echocardiographic index for separation of right ventricular volume and pressure overload. J Am Coll Cardiol 5:918–927CrossRefGoogle Scholar
  36. 36.
    Vogel-Claussen J, Shehata ML, Lossnitzer D et al (2011) Increased right ventricular septomarginal trabeculation mass is a novel marker for pulmonary hypertension: comparison with ventricular mass index and right ventricular mass. Invest Radiol 46:567–575.  https://doi.org/10.1097/RLI.0b013e31821b7041 CrossRefPubMedPubMedCentralGoogle Scholar
  37. 37.
    Swift AJ, Rajaram S, Hurdman J et al (2013) Noninvasive Estimation of PA Pressure, Flow, and Resistance With CMR Imaging: Derivation and Prospective Validation Study From the ASPIRE Registry. JACC Cardiovasc Imaging 6:1036–1047.  https://doi.org/10.1016/j.jcmg.2013.01.013 CrossRefPubMedGoogle Scholar
  38. 38.
    Marra AM, Egenlauf B, Ehlken N et al (2015) Change of right heart size and function by long-term therapy with riociguat in patients with pulmonary arterial hypertension and chronic thromboembolic pulmonary hypertension. Int J Cardiol 195:19–26.  https://doi.org/10.1016/j.ijcard.2015.05.105 CrossRefPubMedGoogle Scholar
  39. 39.
    Yamasaki Y, Nagao M, Kamitani T et al (2016) Clinical impact of left ventricular eccentricity index using cardiac MRI in assessment of right ventricular hemodynamics and myocardial fibrosis in congenital heart disease. Eur Radiol 26:3617–3625.  https://doi.org/10.1007/s00330-015-4199-9 CrossRefPubMedGoogle Scholar
  40. 40.
    Swift AJ, Telfer A, Rajaram S et al (2014) Dynamic contrast-enhanced magnetic resonance imaging in patients with pulmonary arterial hypertension. Pulm Circ 4:61–70.  https://doi.org/10.1086/674882 CrossRefPubMedPubMedCentralGoogle Scholar

Copyright information

© European Society of Radiology 2018

Authors and Affiliations

  • Christian Schoenfeld
    • 1
    • 2
  • Jan B. Hinrichs
    • 1
    • 2
  • Karen M. Olsson
    • 2
    • 3
  • Martin-Alexander Kuettner
    • 1
  • Julius Renne
    • 1
    • 2
  • Till Kaireit
    • 1
    • 2
  • Christoph Czerner
    • 1
    • 2
  • Frank Wacker
    • 1
    • 2
  • Marius M. Hoeper
    • 2
    • 3
  • Bernhard C. Meyer
    • 1
    • 2
  • Jens Vogel-Claussen
    • 1
    • 2
  1. 1.Institute for Diagnostic and Interventional RadiologyHannover Medical SchoolHannoverGermany
  2. 2.Biomedical Research in Endstage and Obstructive Lung Disease Hannover (BREATH)Member of the German Center for Lung Research (DZL)HannoverGermany
  3. 3.Department of Respiratory MedicineHannover Medical SchoolHannoverGermany

Personalised recommendations