European Radiology

, Volume 29, Issue 2, pp 578–587 | Cite as

Validation of scoring hip osteoarthritis with MRI (SHOMRI) scores using hip arthroscopy as a standard of reference

  • Jan NeumannEmail author
  • Alan L. Zhang
  • Benedikt J. Schwaiger
  • Michael A. Samaan
  • Richard Souza
  • Sarah C. Foreman
  • Gabby B. Joseph
  • Trevor Grace
  • Sharmila Majumdar
  • Thomas M. Link



To validate SHOMRI gradings in preoperative hip magnetic resonance imaging (MRI) with intra-arthroscopic evaluation of intraarticular hip abnormalities.


Preoperative non-arthrographic 3.0-T MRIs of 40 hips in 39 patients (1 patient with bilateral hip surgery) with femoroacetabular impingement (FAI) syndrome (mean age, 34.7 years ± 9.0; n = 16 females), refractory to conservative measures, that underwent hip arthroscopy were retrospectively assessed by two radiologists for chondrolabral abnormalities and compared with intra-arthroscopic findings as the standard of reference. Arthroscopically accessible regions were compared with the corresponding SHOMRI subregions and assessed for the presence and grade of cartilaginous pathologies in the acetabulum and femoral head. The acetabular labrum was assessed for the presence or absence of labral tears. For the statistical analysis sensitivity and specificity as well as intraclass correlation (ICC) for interobserver agreement were calculated.


Regarding chondral abnormalities, 58.8% of the surgical cases showed chondral defects. SHOMRI scoring showed a sensitivity of 95.7% and specificity of 84.8% in detecting cartilage lesions. Moreover, all cases with full-thickness defects (n = 9) were identified correctly, and in n = 6 cases (out of n = 36 with partial-thickness defects) the defective cartilage was identified but the actual depth overestimated. Labral tears were present in all cases and the MR readers identified 92.5% correctly. ICC showed a good interobserver agreement with 86.3% (95% CI 80.0, 90.6%)


Using arthroscopic correlation, SHOMRI grading of the hip proves to be a reliable and precise method to assess chondrolabral hip joint abnormalities.

Key Points

• Assessment of hip abnormalities using MRI with surgical correlation.

• Comparing surgery and MRI by creating a hybrid anatomic map that covers both modalities.

• Non-arthrographic use of 3.0-T MRI provides detailed information on cartilage and labral abnormalities in hip joints.


Magnetic resonance imaging Evaluation studies Hip joint Arthroscopy Chondrolabral injuries 



Femoroacetabular impingement


Intraclass correlation


Magnetic resonance imaging


Negative predictive value




Positive predictive value


Standard deviation


Scoring hip osteoarthritis with MRI



This study has received funding by the NIH/NIAMS (National Institute of Arthritis and Musculoskeletal and Skin Diseases) grants P50 AR060752, R01 AR069006 and F32 AR069458.

Compliance with ethical standards


The scientific guarantor of this publication is Prof. Thomas M. Link, MD, PhD, Department of Radiology & Biomedical Imaging, University of California San Francisco, San Francisco, CA, USA.

Conflict of interest

The authors of this manuscript declare no relationships with any companies, whose products or services may be related to the subject matter of the article.

Statistics and biometry

One of the authors has significant statistical expertise.

Informed consent

Written informed consent was obtained from all subjects (patients) in this study.

Ethical approval

Institutional Review Board approval was obtained.


• prospective

• diagnostic study

• performed at one institution


  1. 1.
    United States Bone and Joint Initiative: The Burden of Musculoskeletal Diseases in the United States (BMUS), Third Edition, 2014. Rosemont, IL. Available at Accessed on December 8, 2017
  2. 2.
    Turkiewicz A, Petersson IF, Björk J et al (2014) Current and future impact of osteoarthritis on health care: a population-based study with projections to year 2032. Osteoarthritis Cartilage 22(11):1826–1832CrossRefGoogle Scholar
  3. 3.
    Yusuf E (2016) Pharmacologic and non-pharmacologic treatment of osteoarthritis. Curr Treat Options Rheumatol 2(2):111–125CrossRefGoogle Scholar
  4. 4.
    Karsdal MA, Michaelis M, Ladel C et al (2016) Disease-modifying treatments for osteoarthritis (DMOADs) of the knee and hip: lessons learned from failures and opportunities for the future. Osteoarthritis Cartilage 24(12):2013–2021CrossRefGoogle Scholar
  5. 5.
    Vita AJ, Terry RB, Hubert HB, Fries JF (1998) Aging, health risks, and cumulative disability. N Engl J Med 338(15):1035–1041CrossRefGoogle Scholar
  6. 6.
    Peffers MJ, Balaskas P, Smagul A (2018) Osteoarthritis year in review 2017: genetics and epigenetics. Osteoarthritis Cartilage 26(3):304–311CrossRefGoogle Scholar
  7. 7.
    Felson DT, Lawrence RC, Dieppe PA et al (2000) Osteoarthritis: new insights. Part 1: the disease and its risk factors. Ann Intern Med 133(8):635–646CrossRefGoogle Scholar
  8. 8.
    Quintana JM, Arostegui I, Escobar A et al (2008) Prevalence of knee and hip osteoarthritis and the appropriateness of joint replacement in an older population. Arch Intern Med 168(14):1576–1584CrossRefGoogle Scholar
  9. 9.
    Agricola R, Waarsing JH, Arden NK et al (2013) Cam impingement of the hip: a risk factor for hip osteoarthritis. Nat Rev Rheumatol 9(10):630–634CrossRefGoogle Scholar
  10. 10.
    Department of Research & Scientific Affairs (2014), American Academy of Orthopaedic Surgeons. Annual Incidence of Common Musculoskeletal Procedures and Treatment. Available via Accessed 2 Jan 2018
  11. 11.
    Lee S, Nardo L, Kumar D et al (2015) Scoring hip osteoarthritis with MRI (SHOMRI): a whole joint osteoarthritis evaluation system. J Magn Reson Imaging 41(6):1549–1557CrossRefGoogle Scholar
  12. 12.
    Hipfl C, Titz M, Chiari C et al (2017) Detecting cam-type deformities on plain radiographs: what is the optimal lateral view? Arch Orthop Trauma Surg 137(12):1699–1705CrossRefGoogle Scholar
  13. 13.
    Nötzli HP, Wyss TF, Stoecklin CH et al (2002) The contour of the femoral head-neck junction as a predictor for the risk of anterior impingement. J Bone Joint Surg Br 84(4):556–560CrossRefGoogle Scholar
  14. 14.
    Busse J, Gasteiger W, Tönnis D (1972) Eine neue Methode zur röntgenologischen Beurteilung eines Hüftgelenkes — Der Hüftwert. Archiv für orthopädische und Unfall-Chirurgie, mit besonderer Berücksichtigung der Frakturenlehre und der orthopädisch-chirurgischen Technik 72(1):1–9CrossRefGoogle Scholar
  15. 15.
    Amenabar T, Piriz J, Mella C et al (2015) Reliability of 3 different arthroscopic classifications for chondral damage of the acetabulum. Arthroscopy 31(8):1492–1496CrossRefGoogle Scholar
  16. 16.
    Ilizaliturri VM, Byrd JWT, Sampson TG et al (2008) A geographic zone method to describe intra-articular pathology in hip arthroscopy: cadaveric study and preliminary report. Arthroscopy 24(5):534–539CrossRefGoogle Scholar
  17. 17.
    Petersilge CA (2000) From the RSNA Refresher Courses. Radiological Society of North America. Chronic adult hip pain: MR arthrography of the hip. Radiographics 20:43–52Google Scholar
  18. 18.
    Portney LG, Watkins MP (2009) Foundations of Clinical Research: Applications to Practice, 3rd edn. Prentice Hall, Upper Saddle RiverGoogle Scholar
  19. 19.
    Peterfy CG, Guermazi A, Zaim S et al (2004) Whole-Organ Magnetic Resonance Imaging Score (WORMS) of the knee in osteoarthritis. Osteoarthritis Cartilage 12:177–190CrossRefGoogle Scholar
  20. 20.
    Linda DD, Naraghi A, Murnaghan L et al (2017) Accuracy of non-arthrographic 3T MR imaging in evaluation of intra-articular pathology of the hip in femoroacetabular impingement. Skeletal Radiol 46(3):299–308CrossRefGoogle Scholar
  21. 21.
    Woertler K, Waldt S (2006) MR imaging in sports-related glenohumeral instability. Eur Radiol 16(12):2622–2636CrossRefGoogle Scholar
  22. 22.
    Hobby JL, Dixon AK, Bearcroft PW et al (2001) MR imaging of the wrist: effect on clinical diagnosis and patient care. Radiology 220(3):589–593CrossRefGoogle Scholar
  23. 23.
    Van Dyck P, Gielen JL, Vanhoenacker FM et al (2012) Diagnostic performance of 3D SPACE for comprehensive knee joint assessment at 3 T. Insights Imaging 3(6):603–610CrossRefGoogle Scholar
  24. 24.
    Neumann G, Mendicuti AD, Zou KH et al (2007) Prevalence of labral tears and cartilage loss in patients with mechanical symptoms of the hip: evaluation using MR arthrography. Osteoarthritis Cartilage 15(8):909–917CrossRefGoogle Scholar
  25. 25.
    Roemer FW, Hunter DJ, Winterstein A et al (2011) Hip Osteoarthritis MRI Scoring System (HOAMS): reliability and associations with radiographic and clinical findings. Osteoarthritis Cartilage 19(8):946–962CrossRefGoogle Scholar
  26. 26.
    Schmid MR, Nötzli HP, Zanetti M et al (2003) Cartilage lesions in the hip: diagnostic effectiveness of MR arthrography. Radiology 226(2):382–386CrossRefGoogle Scholar
  27. 27.
    Hunter DJ, Guermazi A, Lo GH et al (2011) Evolution of semiquantitative whole joint assessment of knee OA: MOAKS (MRI Osteoarthritis Knee Score). Osteoarthritis Cartilage 19(8):990–1002CrossRefGoogle Scholar
  28. 28.
    Hunter DJ, Lo GH, Gale D et al (2008) The reliability of a new scoring system for knee osteoarthritis MRI and the validity of bone marrow lesion assessment: BLOKS (Boston Leeds Osteoarthritis Knee Score). Ann Rheum Dis 67(2):206–211CrossRefGoogle Scholar
  29. 29.
    Schmaranzer F, Klauser A, Kogler M et al (2015) Diagnostic performance of direct traction MR arthrography of the hip: detection of chondral and labral lesions with arthroscopic comparison. Eur Radiol 25(6):1721–1730CrossRefGoogle Scholar
  30. 30.
    Sutter R, Zubler V, Hoffmann A et al (2014) Hip MRI: how useful is intraarticular contrast material for evaluating surgically proven lesions of the labrum and articular cartilage? AJR Am J Roentgenol 202(1):160–169CrossRefGoogle Scholar
  31. 31.
    Smith TO, Hilton G, Toms AP et al (2011) The diagnostic accuracy of acetabular labral tears using magnetic resonance imaging and magnetic resonance arthrography: a meta-analysis. Eur Radiol 21(4):863–874CrossRefGoogle Scholar
  32. 32.
    Steinbach LS, Palmer WE, Schweitzer ME (2002) Special focus session. MR arthrography. Radiographics 22(5):1223–1246CrossRefGoogle Scholar
  33. 33.
    Naraghi A, White LM (2015) MRI of labral and chondral lesions of the hip. AJR Am J Roentgenol 205(3):479–490CrossRefGoogle Scholar
  34. 34.
    Chopra A, Grainger AJ, Dube B et al (2018) Comparative reliability and diagnostic performance of conventional 3T magnetic resonance imaging and 1.5T magnetic resonance arthrography for the evaluation of internal derangement of the hip. Eur Radiol 28(3):963–971CrossRefGoogle Scholar
  35. 35.
    Lories RJ, Luyten FP (2011) The bone-cartilage unit in osteoarthritis. Nat Rev Rheumatol 7(1):43–49CrossRefGoogle Scholar
  36. 36.
    Maas O, Joseph GB, Sommer G et al (2015) Association between cartilage degeneration and subchondral bone remodeling in patients with knee osteoarthritis comparing MRI and (99m)Tc-DPD-SPECT/CT. Osteoarthritis Cartilage 23(10):1713–1720CrossRefGoogle Scholar
  37. 37.
    Tanamas SK, Wluka AE, Pelletier J-P et al (2010) The association between subchondral bone cysts and tibial cartilage volume and risk of joint replacement in people with knee osteoarthritis: a longitudinal study. Arthrit Res Ther 12(2):R58CrossRefGoogle Scholar
  38. 38.
    Marra MD, Crema MD, Chung M et al (2008) MRI features of cystic lesions around the knee. Knee 15(6):423–438CrossRefGoogle Scholar
  39. 39.
    Ganz R, Parvizi J, Beck M et al (2003) Femoroacetabular impingement: a cause for osteoarthritis of the hip. Clin Orthop Relat Res (417): 112–120Google Scholar
  40. 40.
    Lavigne M, Parvizi J, Beck M et al (2004) Anterior femoroacetabular impingement: part I. Techniques of joint preserving surgery. Clin Orthop Relat Res (418): 61–66.Google Scholar
  41. 41.
    Dall’Oca C, Trivellin G, D’Orazio L et al (2016) Hip arthroscopy in osteoarthritis consequent to FAI. Acta Biomed 87(Suppl 1):46–52Google Scholar

Copyright information

© European Society of Radiology 2018

Authors and Affiliations

  • Jan Neumann
    • 1
    Email author return OK on get
  • Alan L. Zhang
    • 2
  • Benedikt J. Schwaiger
    • 1
    • 3
  • Michael A. Samaan
    • 1
  • Richard Souza
    • 1
    • 4
  • Sarah C. Foreman
    • 1
  • Gabby B. Joseph
    • 1
  • Trevor Grace
    • 2
  • Sharmila Majumdar
    • 1
  • Thomas M. Link
    • 1
  1. 1.Musculoskeletal Quantitative Imaging Research Group, Department of Radiology & Biomedical ImagingUniversity of California San FranciscoSan FranciscoUSA
  2. 2.Department of Orthopedic SurgeryUniversity of CaliforniaSan FranciscoUSA
  3. 3.Department of Diagnostic and Interventional RadiologyTechnical University of MunichMunichGermany
  4. 4.Department of Physical Therapy & Rehabilitation ScienceUniversity of CaliforniaSan FranciscoUSA

Personalised recommendations