Advertisement

European Radiology

, Volume 28, Issue 10, pp 4418–4428 | Cite as

Accurate IVIM model-based liver lesion characterisation can be achieved with only three b-value DWI

  • P. Mürtz
  • A. M. Sprinkart
  • M. Reick
  • C. C. Pieper
  • A.-H. Schievelkamp
  • R. König
  • H. H. Schild
  • W. A. Willinek
  • G. M. Kukuk
Magnetic Resonance
  • 202 Downloads

Abstract

Objective

The objective of this study was to evaluate a simplified intravoxel incoherent motion (IVIM) approach of diffusion-weighted imaging (DWI) with four b-values for liver lesion characterisation at 1.5 T.

Methods

DWI data from a respiratory-gated MRI sequence with b = 0, 50, 250, 800 s/mm2 were retrospectively analysed in 173 lesions and 40 healthy livers. The apparent diffusion coefficient ADC = ADC(0,800) and IVIM-based parameters D1′ = ADC(50,800), D2′ =ADC(250,800), f1′, f2′, D*′, ADClow = ADC(0,50), and ADCdiff=ADClow-D2′ were calculated voxel-wise without fitting procedures. Differences between lesion groups were investigated.

Results

Focal nodular hyperplasias were best discriminated from all other lesions by f1′ with an area under the curve (AUC) of 0.989. Haemangiomas were best discriminated by D1′ (AUC of 0.994). For discrimination between malignant and benign lesions, ADC(0,800) and D1′ were best suited (AUC of 0.915 and 0.858, respectively). Discriminatory power was further increased by using a combination of D1′ and f1′.

Conclusion

IVIM parameters D and f approximated from three b-values provided more discriminatory power between liver lesions than ADC determined from two b-values. The use of b = 0, 50, 800 s/mm2 was superior to that of b = 0, 250, 800 s/mm2. The acquisition of four instead of three b-values has no further benefit for lesion characterisation.

Key Points

Diffusion and perfusion characteristics are assessable with only three b-values.

Association of b = 0, 50, 800 s/mm2is superior to b = 0, 250, 800 s/mm2.

A fourth acquired b-value has no benefit for differential diagnosis.

For liver lesion characterisation, simplified IVIM analysis is superior to ADC determination.

Simplified IVIM approach guarantees numerically stable, voxel-wise results and short acquisition times.

Keywords

Diffusion magnetic resonance imaging Carcinoma, hepatocellular Liver neoplasms Haemangioma Focal nodular hyperplasia 

Abbreviations

ADC

Apparent diffusion coefficient

AUC

Area under the curve

CCC

Cholangiocellular carcinoma

DWI

Diffusion-weighted imaging

FNH

Focal nodular hyperplasia

HCC

Hepatocellular carcinoma

IVIM

Intravoxel incoherent motion

REF

Reference tissue

ROI

Region of interest

Notes

Funding

The authors state that this work has not received any funding.

Compliance with ethical standards

Guarantor

The scientific guarantor of this publication is Petra Mürtz.

Conflict of interest

The authors of this manuscript declare no relationships with any companies, whose products or services may be related to the subject matter of the article.

Statistics and biometry

No complex statistical methods were necessary for this paper.

Informed consent

Written informed consent was waived by the Institutional Review Board.

Ethical approval

Institutional Review Board approval was obtained.

Methodology

• retrospective

• diagnostic study

• performed at one institution

References

  1. 1.
    Taouli B (2012) Diffusion-weighted MR imaging for liver lesion characterization: a critical look. Radiology 262:378–380CrossRefGoogle Scholar
  2. 2.
    Taouli B, Koh DM (2010) Diffusion-weighted MR imaging of the liver. Radiology 254:47–66CrossRefGoogle Scholar
  3. 3.
    Takahara T, Kwee TC (2012) Low b-value diffusion-weighted imaging: emerging applications in the body. J Magn Reson Imaging 35:1266–1273CrossRefGoogle Scholar
  4. 4.
    Kwee TC, Takahara T (2011) Diffusion-weighted MRI for detecting liver metastases: importance of the b-value. Eur Radiol 21:150CrossRefGoogle Scholar
  5. 5.
    Coenegrachts K, Delanote J, Ter Beek L et al (2009) Evaluation of true diffusion, perfusion factor, and apparent diffusion coefficient in non-necrotic liver metastases and uncomplicated liver hemangiomas using black-blood echo planar imaging. Eur J Radiol 69:131–138CrossRefGoogle Scholar
  6. 6.
    Parikh T, Drew SJ, Lee VS et al (2008) Focal liver lesion detection and characterization with diffusion-weighted MR imaging: comparison with standard breath-hold T2-weighted imaging. Radiology 246:812–822CrossRefGoogle Scholar
  7. 7.
    Gourtsoyianni S, Papanikolaou N, Yarmenitis S et al (2008) Respiratory gated diffusion-weighted imaging of the liver: value of apparent diffusion coefficient measurements in the differentiation between most commonly encountered benign and malignant focal liver lesions. Eur Radiol 18:486–492CrossRefGoogle Scholar
  8. 8.
    Coenegrachts K, Delanote J, Ter Beek L et al (2007) Improved focal liver lesion detection: comparison of single-shot diffusion-weighted echoplanar and single-shot T2 weighted turbo spin echo techniques. Br J Radiol 80:524–531CrossRefGoogle Scholar
  9. 9.
    Padhani AR, Liu G, Koh DM et al (2009) Diffusion-weighted magnetic resonance imaging as a cancer biomarker: consensus and recommendations. Neoplasia 11:102–125CrossRefGoogle Scholar
  10. 10.
    Koh DM, Collins DJ, Orton MR (2011) Intravoxel incoherent motion in body diffusion-weighted MRI: reality and challenges. AJR Am J Roentgenol 196:1351–1361CrossRefGoogle Scholar
  11. 11.
    Guiu B, Cercueil JP (2011) Liver diffusion-weighted MR imaging: the tower of Babel? Eur Radiol 21:463–467CrossRefGoogle Scholar
  12. 12.
    Le Bihan D, Breton E, Lallemand D et al (1988) Separation of diffusion and perfusion in intravoxel incoherent motion MR imaging. Radiology 168:497–505CrossRefGoogle Scholar
  13. 13.
    Aoyagi T, Shuto K, Okazumi S et al (2012) Apparent diffusion coefficient correlation with oesophageal tumour stroma and angiogenesis. Eur Radiol 22:1172–1177CrossRefGoogle Scholar
  14. 14.
    Cho GY, Kim S, Jensen JH et al (2012) A versatile flow phantom for intravoxel incoherent motion MRI. Magn Reson Med 67:1710–1720CrossRefGoogle Scholar
  15. 15.
    Lee Y, Lee SS, Kim N et al (2015) Intravoxel incoherent motion diffusion-weighted MR imaging of the liver: effect of triggering methods on regional variability and measurement repeatability of quantitative parameters. Radiology 274:405–415.  https://doi.org/10.1148/radiol.14140759 CrossRefPubMedGoogle Scholar
  16. 16.
    Luciani A, Vignaud A, Cavet M et al (2008) Liver cirrhosis: intravoxel incoherent motion MR imaging--pilot study. Radiology 249:891–899CrossRefGoogle Scholar
  17. 17.
    Cohen AD, Schieke MC, Hohenwalter MD, Schmainda KM (2015) The effect of low b-values on the intravoxel incoherent motion derived pseudodiffusion parameter in liver. Magn Reson Med 73:306–311.  https://doi.org/10.1002/mrm.25109 CrossRefPubMedGoogle Scholar
  18. 18.
    Parente DB, Paiva FF, Oliveira Neto JA et al (2015) Intravoxel incoherent motion diffusion weighted mr imaging at 3.0 T: assessment of steatohepatitis and fibrosis compared with liver biopsy in type 2 diabetic patients. PLoS One 10:e0125653.  https://doi.org/10.1371/journal.pone.0125653 CrossRefPubMedPubMedCentralGoogle Scholar
  19. 19.
    Lu P-X, Huang H, Yuan J et al (2014) Decreases in molecular diffusion, perfusion fraction and perfusion-related diffusion in fibrotic livers: a prospective clinical intravoxel incoherent motion MR imaging study. PLoS ONE 9:e113846.  https://doi.org/10.1371/journal.pone.0113846 CrossRefPubMedPubMedCentralGoogle Scholar
  20. 20.
    Guiu B, Petit JM, Capitan V et al (2012) Intravoxel incoherent motion diffusion-weighted imaging in nonalcoholic fatty liver disease: a 3.0-T MR study. Radiology 265:96–103CrossRefGoogle Scholar
  21. 21.
    Wang M, Li X, Zou J et al (2016) Evaluation of hepatic tumors using intravoxel incoherent motion diffusion-weighted MRI. Med Sci Monit 22:702–709.  https://doi.org/10.12659/MSM.895909 CrossRefPubMedPubMedCentralGoogle Scholar
  22. 22.
    Ichikawa S, Motosugi U, Ichikawa T et al (2013) Intravoxel incoherent motion imaging of focal hepatic lesions. J Magn Reson Imaging 37:1371–1376.  https://doi.org/10.1002/jmri.23930 CrossRefPubMedGoogle Scholar
  23. 23.
    Doblas S, Wagner M, Leitao HS et al (2013) Determination of malignancy and characterization of hepatic tumor type with diffusion-weighted magnetic resonance imaging: comparison of apparent diffusion coefficient and intravoxel incoherent motion–derived measurements. Invest Radiol 48:722–728CrossRefGoogle Scholar
  24. 24.
    Kakite S, Dyvorne H, Besa C et al (2015) Hepatocellular carcinoma: short-term reproducibility of apparent diffusion coefficient and intravoxel incoherent motion parameters at 3.0T. J Magn Reson Imaging 41:149–156.  https://doi.org/10.1002/jmri.24538 CrossRefPubMedGoogle Scholar
  25. 25.
    Andreou A, Koh DM, Collins DJ et al (2013) Measurement reproducibility of perfusion fraction and pseudodiffusion coefficient derived by intravoxel incoherent motion diffusion-weighted MR imaging in normal liver and metastases. Eur Radiol 23:428–434CrossRefGoogle Scholar
  26. 26.
    Penner A-H, Sprinkart AM, Kukuk GM et al (2013) Intravoxel incoherent motion model-based liver lesion characterisation from three b-value diffusion-weighted MRI. Eur Radiol 23:2773–2783.  https://doi.org/10.1007/s00330-013-2869-z CrossRefPubMedGoogle Scholar
  27. 27.
    Mürtz P, Penner A-H, Pfeiffer A-K et al (2016) Intravoxel incoherent motion model-based analysis of diffusion-weighted magnetic resonance imaging with 3 b-values for response assessment in locoregional therapy of hepatocellular carcinoma. Onco Targets Ther 9:6425–6433.  https://doi.org/10.2147/OTT.S113909 CrossRefPubMedPubMedCentralGoogle Scholar
  28. 28.
    Pieper C, Meyer C, Sprinkart AM et al (2016) The value of intravoxel incoherent motion model-based diffusion-weighted imaging for outcome prediction in resin-based radioembolization of breast cancer liver metastases. Onco Targets Ther 9:4089–4098.  https://doi.org/10.2147/OTT.S104770 CrossRefPubMedPubMedCentralGoogle Scholar
  29. 29.
    Pieper CC, Sprinkart AM, Meyer C et al (2016) Evaluation of a simplified intravoxel incoherent motion (IVIM) analysis of diffusion-weighted imaging for prediction of tumor size changes and imaging response in breast cancer liver metastases undergoing radioembolization: a retrospective single center analysis. Medicine 95:e3275.  https://doi.org/10.1097/MD.0000000000003275 CrossRefPubMedPubMedCentralGoogle Scholar
  30. 30.
    Pieper CC, Willinek WA, Meyer C et al (2016) Intravoxel incoherent motion diffusion-weighted MR imaging for prediction of early arterial blood flow stasis in radioembolization of breast cancer liver metastases. J Vasc Interv Radiol 27:1320–1328.  https://doi.org/10.1016/j.jvir.2016.04.018 CrossRefPubMedGoogle Scholar
  31. 31.
    Bruix J, Sherman M (2011) Management of hepatocellular carcinoma: an update. Hepatology 53:1020–1022CrossRefGoogle Scholar
  32. 32.
    Liu Y, Ye Z, Sun H, Bai R (2013) Grading of uterine cervical cancer by using the ADC difference value and its correlation with microvascular density and vascular endothelial growth factor. Eur Radiol 23:757–765.  https://doi.org/10.1007/s00330-012-2657-1 CrossRefPubMedGoogle Scholar
  33. 33.
    Zhu L, Cheng Q, Luo W et al (2015) A comparative study of apparent diffusion coefficient and intravoxel incoherent motion-derived parameters for the characterization of common solid hepatic tumors. Acta Radiol 56:1411–1418.  https://doi.org/10.1177/0284185114559426 CrossRefPubMedGoogle Scholar
  34. 34.
    Watanabe H, Kanematsu M, Goshima S et al (2014) Characterizing focal hepatic lesions by free-breathing intravoxel incoherent motion MRI at 3.0 T. Acta Radiol 55:1166–1173.  https://doi.org/10.1177/0284185113514966 CrossRefPubMedGoogle Scholar
  35. 35.
    Colagrande S, Regini F, Pasquinelli F et al (2013) Focal liver lesion classification and characterization in noncirrhotic liver: a prospective comparison of diffusion-weighted magnetic resonance–related parameters. J Comput Assist Tomogr 37:560–567CrossRefGoogle Scholar
  36. 36.
    Coenegrachts K (2009) Magnetic resonance imaging of the liver: New imaging strategies for evaluating focal liver lesions. World J Radiol 1:72.  https://doi.org/10.4329/wjr.v1.i1.72 CrossRefPubMedPubMedCentralGoogle Scholar
  37. 37.
    Moteki T, Horikoshi H (2006) Evaluation of hepatic lesions and hepatic parenchyma using diffusion-weighted echo-planar MR with three values of gradient b-factor. J Magn Reson Imaging 24:637–645CrossRefGoogle Scholar
  38. 38.
    Lewin M, Fartoux L, Vignaud A et al (2011) The diffusion-weighted imaging perfusion fraction f is a potential marker of sorafenib treatment in advanced hepatocellular carcinoma: a pilot study. Eur Radiol 21:281–290CrossRefGoogle Scholar
  39. 39.
    Kim S, Decarlo L, Cho GY et al (2012) Interstitial fluid pressure correlates with intravoxel incoherent motion imaging metrics in a mouse mammary carcinoma model. NMR Biomed 25:787–794CrossRefGoogle Scholar
  40. 40.
    Lee HJ, Rha SY, Chung YE et al (2014) Tumor perfusion-related parameter of diffusion-weighted magnetic resonance imaging: correlation with histological microvessel density. Magn Reson Med 71:1554–1558.  https://doi.org/10.1002/mrm.24810 CrossRefPubMedGoogle Scholar
  41. 41.
    Wagner M, Doblas S, Daire JL et al (2012) Diffusion-weighted MR imaging for the regional characterization of liver tumors. Radiology 264:464–472.  https://doi.org/10.1148/radiol.12111530 CrossRefPubMedGoogle Scholar
  42. 42.
    Yoon JH, Lee JM, Yu MH et al (2014) Evaluation of hepatic focal lesions using diffusion-weighted MR imaging: comparison of apparent diffusion coefficient and intravoxel incoherent motion-derived parameters. J Magn Reson Imaging 39:276–285.  https://doi.org/10.1002/jmri.24158 CrossRefPubMedGoogle Scholar
  43. 43.
    Yamada I, Aung W, Himeno Y et al (1999) Diffusion coefficients in abdominal organs and hepatic lesions: evaluation with intravoxel incoherent motion echo-planar MR imaging. Radiology 210:617–623CrossRefGoogle Scholar
  44. 44.
    Zhang JL, Sigmund EE, Rusinek H et al (2012) Optimization of b-value sampling for diffusion-weighted imaging of the kidney. Magn Reson Med 67:89–97.  https://doi.org/10.1002/mrm.22982 CrossRefPubMedGoogle Scholar
  45. 45.
    Cercueil J-P, Petit J-M, Nougaret S et al (2015) Intravoxel incoherent motion diffusion-weighted imaging in the liver: comparison of mono-, bi- and tri-exponential modelling at 3.0-T. Eur Radiol 25:1541–1550.  https://doi.org/10.1007/s00330-014-3554-6 CrossRefPubMedGoogle Scholar

Copyright information

© European Society of Radiology 2018

Authors and Affiliations

  • P. Mürtz
    • 1
    • 2
  • A. M. Sprinkart
    • 1
  • M. Reick
    • 1
  • C. C. Pieper
    • 1
  • A.-H. Schievelkamp
    • 1
  • R. König
    • 1
  • H. H. Schild
    • 1
  • W. A. Willinek
    • 1
  • G. M. Kukuk
    • 1
  1. 1.Department of RadiologyUniversity of BonnBonnGermany
  2. 2.Radiologische Klinik der Universität BonnBonnGermany

Personalised recommendations