Advertisement

European Radiology

, Volume 28, Issue 10, pp 4215–4224 | Cite as

Can functional parameters from hepatobiliary phase of gadoxetate MRI predict clinical outcomes in patients with cirrhosis?

  • Kumar Sandrasegaran
  • Enming Cui
  • Reem Elkady
  • Pauley Gasparis
  • Gitasree Borthakur
  • Mark Tann
  • Suthat Liangpunsakul
Gastrointestinal
  • 240 Downloads

Abstract

Objectives

To determine the value of quantitative parameters of gadoxetate-enhanced magnetic resonance imaging (MRI) in predicting prognosis in patients with cirrhosis.

Methods

A cohort of 63 cirrhotic patients who had gadoxetate MRI and 2-year clinical follow-up was enrolled. Enhancement ratio (ER), contrast enhancement index (CEI) and contrast enhancement spleen index (CES) were calculated. The usefulness of these parameters and clinical scores, such as Child-Pugh score (CPS) and model for end stage liver disease (MELD), in predicting adverse outcomes, such as variceal bleeding (VB), hepatic encephalopathy (HE) and mortality at 2 years were evaluated.

Results

Fifteen, 31 and 27 patients, respectively, had VB, HE and mortality within 2 years. The ER at 15 min (ER 15) and CES at 20 min (CES 20) were found to be the best MRI predictors. Areas under the receiver operating characteristic curve (AUC) for predicting VB were 0.785, 0.729, 0.673, 0.714, respectively, for ER 15, CES 20, CPS and MELD scores. ER 15 of less than 48 had sensitivity of 96% and specificity of 84% for predicting onset of HE within 2 years.

Conclusions

In patients with cirrhosis, ER 15 or CES 20 were equivalent or better predictors of major morbidity and mortality compared with commonly used clinical scores.

Key Points

• Gadoxetate parameters may identify cirrhotic patients at risk of adverse events.

• Gadoxetate parameters usually show superior predictive values compared to clinical scores.

• CES 20 score is associated with risk of mortality within 2 years.

Keywords

Liver cirrhosis Patient outcome assessment Magnetic resonance imaging Gadolinium Hepatic encephalopathy 

Notes

Funding

The authors state that this work has not received any funding.

Compliance with ethical standards

Guarantor

The scientific guarantor of this publication is Kumar Sandrasegaran, MD.

Conflict of interest

The authors of this manuscript declare relationships with the following companies: Kumar Sandrasegaran is a consultant for Guerbet Pharmaceuticals.

The other authors of this manuscript declare no relationships with any companies, whose products or services may be related to the subject matter of the article.

Statistics and biometry

One of the authors has significant statistical expertise.

Informed consent

Written informed consent was waived by the Institutional Review Board.

Ethical approval

Institutional Review Board approval was obtained.

Methodology

• Retrospective

• Case-control study

• Performed at one institution

References

  1. 1.
    El-Desoky A, Seifalian AM, Cope M, Delpy DT, Davidson BR (1999) Experimental study of liver dysfunction evaluated by direct indocyanine green clearance using near infrared spectroscopy. Br J Surg 86:1005–1011CrossRefGoogle Scholar
  2. 2.
    Hoekstra LT, de Graaf W, Nibourg GA et al (2013) Physiological and biochemical basis of clinical liver function tests: a review. Ann Surg 257:27–36CrossRefGoogle Scholar
  3. 3.
    Cholongitas E, Papatheodoridis GV, Vangeli M, Terreni N, Patch D, Burroughs AK (2005) Systematic review: The model for end-stage liver disease—should it replace Child-Pugh's classification for assessing prognosis in cirrhosis? Aliment Pharmacol Ther 22:1079–1089CrossRefGoogle Scholar
  4. 4.
    Sheng QS, Lang R, He Q, Yang YJ, Zhao DF, Chen DZ (2009) Indocyanine green clearance test and model for end-stage liver disease score of patients with liver cirrhosis. Hepatobiliary Pancreat Dis Int 8:46–49PubMedGoogle Scholar
  5. 5.
    Forman LM, Lucey MR (2001) Predicting the prognosis of chronic liver disease: an evolution from child to MELD. Mayo End-stage Liver Disease. Hepatology 33:473–475PubMedGoogle Scholar
  6. 6.
    Tamada T, Ito K, Higaki A et al (2011) Gd-EOB-DTPA-enhanced MR imaging: evaluation of hepatic enhancement effects in normal and cirrhotic livers. Eur J Radiol 80:e311–e316CrossRefGoogle Scholar
  7. 7.
    Tajima T, Takao H, Akai H et al (2010) Relationship between liver function and liver signal intensity in hepatobiliary phase of gadolinium ethoxybenzyl diethylenetriamine pentaacetic acid-enhanced magnetic resonance imaging. J Comput Assist Tomogr 34:362–366CrossRefGoogle Scholar
  8. 8.
    Frydrychowicz A, Lubner MG, Brown JJ et al (2012) Hepatobiliary MR imaging with gadolinium-based contrast agents. J Magn Reson Imaging 35:492–511CrossRefGoogle Scholar
  9. 9.
    Verloh N, Haimerl M, Rennert J et al (2013) Impact of liver cirrhosis on liver enhancement at Gd-EOB-DTPA enhanced MRI at 3 tesla. Eur J Radiol 82:1710–1715CrossRefGoogle Scholar
  10. 10.
    Noren B, Forsgren MF, Dahlqvist Leinhard O et al (2013) Separation of advanced from mild hepatic fibrosis by quantification of the hepatobiliary uptake of Gd-EOB-DTPA. Eur Radiol 23:174–181CrossRefGoogle Scholar
  11. 11.
    Okada M, Ishii K, Numata K et al (2012) Can the biliary enhancement of Gd-EOB-DTPA predict the degree of liver function? Hepatobiliary Pancreat Dis Int 11:307–313CrossRefGoogle Scholar
  12. 12.
    Okubo H, Mogami M, Ozaki Y et al (2013) Liver function test by gadolinium-ethoxybenzyl-diethylenetriamine pentaacetic acid-enhanced magnetic resonance imaging with consideration of intrahepatic regional differences. Hepatogastroenterology 60:1547–1551PubMedGoogle Scholar
  13. 13.
    Saito K, Ledsam J, Sourbron S et al (2014) Measuring hepatic functional reserve using low temporal resolution Gd-EOB-DTPA dynamic contrast-enhanced MRI: a preliminary study comparing galactosyl human serum albumin scintigraphy with indocyanine green retention. Eur Radiol 24:112–119CrossRefGoogle Scholar
  14. 14.
    Wu J, Li H, Lin Y et al (2015) Value of gadoxetate biliary transit time in determining hepatocyte function. Abdom Imaging 40:95–101CrossRefGoogle Scholar
  15. 15.
    Yamada A, Hara T, Li F et al (2011) Quantitative evaluation of liver function with use of gadoxetate disodium-enhanced MR imaging. Radiology 260:727–733CrossRefGoogle Scholar
  16. 16.
    Verloh N, Haimerl M, Zeman F et al (2014) Assessing liver function by liver enhancement during the hepatobiliary phase with Gd-EOB-DTPA-enhanced MRI at 3 tesla. Eur Radiol 24:1013–1019CrossRefGoogle Scholar
  17. 17.
    Nilsson H, Blomqvist L, Douglas L et al (2013) Gd-EOB-DTPA-enhanced MRI for the assessment of liver function and volume in liver cirrhosis. Br J Radiol 86:20120653CrossRefGoogle Scholar
  18. 18.
    Blanche P, Dartigues JF, Jacqmin-Gadda H (2013) Review and comparison of ROC curve estimators for a time-dependent outcome with marker-dependent censoring. Biom J 55:687–704CrossRefGoogle Scholar
  19. 19.
    Linden A (2006) Measuring diagnostic and predictive accuracy in disease management: an introduction to receiver operating characteristic (ROC) analysis. J Eval Clin Pract 12:132–139CrossRefGoogle Scholar
  20. 20.
    Faria SC, Ganesan K, Mwangi I et al (2009) MR imaging of liver fibrosis: current state of the art. Radiographics 29:1615–1635CrossRefGoogle Scholar
  21. 21.
    Brancatelli G, Federle MP, Ambrosini R et al (2007) Cirrhosis: CT and MR imaging evaluation. Eur J Radiol 61:57–69CrossRefGoogle Scholar
  22. 22.
    Gupta AA, Kim DC, Krinsky GA, Lee VS (2004) CT and MRI of cirrhosis and its mimics. AJR Am J Roentgenol 183:1595–1601CrossRefGoogle Scholar
  23. 23.
    Feier D, Balassy C, Bastati N, Stift J, Badea R, Ba-Ssalamah A (2013) Liver fibrosis: histopathologic and biochemical influences on diagnostic efficacy of hepatobiliary contrast-enhanced MR imaging in staging. Radiology 269:460–468CrossRefGoogle Scholar
  24. 24.
    Choi YR, Lee JM, Yoon JH, Han JK, Choi BI (2013) Comparison of magnetic resonance elastography and gadoxetate disodium-enhanced magnetic resonance imaging for the evaluation of hepatic fibrosis. Invest Radiol 48:607–613CrossRefGoogle Scholar
  25. 25.
    Choi Y, Huh J, Woo DC, Kim KW (2016) Use of gadoxetate disodium for functional MRI based on its unique molecular mechanism. Br J Radiol 89:20150666CrossRefGoogle Scholar
  26. 26.
    Chernyak V, Kim J, Rozenblit AM, Mazzoriol F, Ricci Z (2011) Hepatic enhancement during the hepatobiliary phase after gadoxetate disodium administration in patients with chronic liver disease: the role of laboratory factors. J Magn Reson Imaging 34:301–309CrossRefGoogle Scholar
  27. 27.
    Lagadec M, Doblas S, Giraudeau C et al (2015) Advanced fibrosis: Correlation between pharmacokinetic parameters at dynamic gadoxetate-enhanced MR imaging and hepatocyte organic anion transporter expression in rat liver. Radiology 274:379–386CrossRefGoogle Scholar
  28. 28.
    Choi JY, Kim H, Sun M, Sirlin CB (2014) Histogram analysis of hepatobiliary phase MR imaging as a quantitative value for liver cirrhosis: preliminary observations. Yonsei Med J 55:651–659CrossRefGoogle Scholar
  29. 29.
    Jang YJ, Cho SH, Bae JH et al (2013) Noninvasive assessment of hepatic fibrosis using gadoxetate-disodium-enhanced 3T MRI. Ann Hepatol 12:926–934PubMedGoogle Scholar
  30. 30.
    Cho SH, Kang UR, Kim JD, Han YS, Choi DL (2011) The value of gadoxetate disodium-enhanced MR imaging for predicting posthepatectomy liver failure after major hepatic resection: a preliminary study. Eur J Radiol 80:e195–e200CrossRefGoogle Scholar
  31. 31.
    Wibmer A, Aliya Q, Steininger R et al (2012) Liver transplantation: impaired biliary excretion of gadoxate is associated with an inferior 1-year retransplantation-free survival. Invest Radiol 47:353–358CrossRefGoogle Scholar
  32. 32.
    Wibmer A, Prusa AM, Nolz R, Gruenberger T, Schindl M, Ba-Ssalamah A (2013) Liver failure after major liver resection: risk assessment by using preoperative gadoxetic acid-enhanced 3-T MR imaging. Radiology 269:777–786CrossRefGoogle Scholar
  33. 33.
    Kim JY, Lee SS, Byun JH et al (2013) Biologic factors affecting HCC conspicuity in hepatobiliary phase imaging with liver-specific contrast agents. AJR Am J Roentgenol 201:322–331CrossRefGoogle Scholar
  34. 34.
    Takao H, Akai H, Tajima T et al (2011) MR imaging of the biliary tract with Gd-EOB-DTPA: effect of liver function on signal intensity. Eur J Radiol 77:325–329CrossRefGoogle Scholar
  35. 35.
    Vlachogiannakos J, Goulis J, Patch D, Burroughs AK (2000) Review article: primary prophylaxis for portal hypertensive bleeding in cirrhosis. Aliment Pharmacol Ther 14:851–860CrossRefGoogle Scholar
  36. 36.
    D'Amico G, Garcia-Pagan JC, Luca A, Bosch J (2006) Hepatic vein pressure gradient reduction and prevention of variceal bleeding in cirrhosis: a systematic review. Gastroenterology 131:1611–1624CrossRefGoogle Scholar
  37. 37.
    Chalasani N, Kahi C, Francois F et al (2003) Improved patient survival after acute variceal bleeding: a multicenter, cohort study. Am J Gastroenterol 98:653–659CrossRefGoogle Scholar
  38. 38.
    Groszmann RJ, Garcia-Tsao G, Bosch J et al (2005) Beta-blockers to prevent gastroesophageal varices in patients with cirrhosis. N Engl J Med 353:2254–2261CrossRefGoogle Scholar
  39. 39.
    Eslam M, Ampuero J, Jover M et al (2013) Predicting portal hypertension and variceal bleeding using non-invasive measurements of metabolic variables. Ann Hepatol 12:588–598PubMedGoogle Scholar
  40. 40.
    Kim BK, Ahn SH, Han KH et al (2012) Prediction of esophageal variceal bleeding in B-viral liver cirrhosis using the P2/MS noninvasive index based on complete blood counts. Digestion 86:264–272CrossRefGoogle Scholar
  41. 41.
    Rockey DC, Elliott A, Lyles T (2016) Prediction of esophageal varices and variceal hemorrhage in patients with acute upper gastrointestinal bleeding. J Investig Med 64:745–751CrossRefGoogle Scholar
  42. 42.
    Soga K, Kassai K, Konishi H et al (2014) Prediction of large esophageal variceal bleeding and subsequent mortality. Hepatogastroenterology 61:678–682PubMedGoogle Scholar
  43. 43.
    de Franchis R, Dell'Era A (2008) Novel developments in esophageal vascular disorders. Curr Opin Gastroenterol 24:490–495CrossRefGoogle Scholar
  44. 44.
    Maldonado-Garza HJ, Vazquez-Elizondo G, Gaytan-Torres JO, Flores-Rendon AR, Cardenas-Sandoval MG, Bosques-Padilla FJ (2011) Prevalence of minimal hepatic encephalopathy in cirrhotic patients. Ann Hepatol 10(Suppl 2):S40–S44PubMedGoogle Scholar
  45. 45.
    Leise MD, Poterucha JJ, Kamath PS, Kim WR (2014) Management of hepatic encephalopathy in the hospital. Mayo Clin Proc 89:241–253CrossRefGoogle Scholar
  46. 46.
    Shah NJ, Neeb H, Zaitsev M et al (2003) Quantitative T1 mapping of hepatic encephalopathy using magnetic resonance imaging. Hepatology 38:1219–1226CrossRefGoogle Scholar
  47. 47.
    Zhang XD, Zhang LJ, Wu SY, Lu GM (2014) Multimodality magnetic resonance imaging in hepatic encephalopathy: an update. World J Gastroenterol 20:11262–11272CrossRefGoogle Scholar
  48. 48.
    Dabos KJ, Parkinson JA, Sadler IH, Plevris JN, Hayes PC (2015) (1)H nuclear magnetic resonance spectroscopy-based metabonomic study in patients with cirrhosis and hepatic encephalopathy. World J Hepatol 7:1701–1707CrossRefGoogle Scholar
  49. 49.
    Sharma P, Sharma BC (2013) Disaccharides in the treatment of hepatic encephalopathy. Metab Brain Dis 28:313–320CrossRefGoogle Scholar
  50. 50.
    Bass NM, Mullen KD, Sanyal A et al (2010) Rifaximin treatment in hepatic encephalopathy. N Engl J Med 362:1071–1081CrossRefGoogle Scholar
  51. 51.
    Sharma P, Sharma BC, Agrawal A, Sarin SK (2012) Primary prophylaxis of overt hepatic encephalopathy in patients with cirrhosis: an open labeled randomized controlled trial of lactulose versus no lactulose. J Gastroenterol Hepatol 27:1329–1335CrossRefGoogle Scholar
  52. 52.
    Rahimi RS, Rockey DC (2014) Hepatic encephalopathy: how to test and treat. Curr Opin Gastroenterol 30:265–271CrossRefGoogle Scholar
  53. 53.
    Lunia MK, Sharma BC, Sharma P, Sachdeva S, Srivastava S (2014) Probiotics prevent hepatic encephalopathy in patients with cirrhosis: a randomized controlled trial. Clin Gastroenterol Hepatol 12(1003-1008):e1001Google Scholar
  54. 54.
    Choi JS, Kim MJ, Choi JY, Park MS, Lim JS, Kim KW (2010) Diffusion-weighted MR imaging of liver on 3.0-tesla system: effect of intravenous administration of gadoxetic acid disodium. Eur Radiol 20:1052–1060CrossRefGoogle Scholar

Copyright information

© European Society of Radiology 2018

Authors and Affiliations

  1. 1.Department of RadiologyIndiana University School of MedicineIndianapolisUSA
  2. 2.Department of RadiologyJiangmen Central HospitalJiangmenChina
  3. 3.Department of RadiologyAssiut UniversityAssiutEgypt
  4. 4.Department of RadiologyTaibah UniversityMedinaSaudi Arabia
  5. 5.Department of Medicine (Division of Hepatology)Indiana University School of MedicineIndianapolisUSA
  6. 6.Department of MedicineRobert Roudebush VA Medical CenterIndianapolisUSA

Personalised recommendations