Advertisement

European Radiology

, Volume 28, Issue 10, pp 4465–4474 | Cite as

2D shear wave elastography combined with MELD improved prognostic accuracy in patients with acute-on-chronic hepatitis B liver failure

  • Jie-Yang Jin
  • Yu-Bao Zheng
  • Jian Zheng
  • Jing Liu
  • Yong-Jiang Mao
  • Shi-Gao Chen
  • Zhi-Liang Gao
  • Rong-Qin Zheng
Ultrasound
  • 125 Downloads

Abstract

Objectives

To evaluate accuracy of two-dimensional shear wave elastography (2D SWE) and develop and validate a new prognostic score in predicting prognosis of acute-on-chronic liver failure (ACLF) patients.

Methods

From 1 October 2013 to 30 September 2015, we consecutively enrolled 290 patients, sequentially collected data (including 2D SWE, ultrasound parameters, laboratory data and prognostic scores) and recorded patients’ outcome (recovering/steady or worsening) during a 90-day follow-up period. We evaluated ability of 2D SWE to predict outcomes of acute-on-chronic hepatitis B liver failure (ACLF-HBV) patients. We developed a new score (MELD-SWE, combining MELD and SWE values) for predicting mortality risk of ACLF-HBV in 179 patients in a derivation group, and validated in 111 patients.

Results

2D SWE values were higher in worsening patients than recovering/steady ones (p < 0.001). Accuracy of 2D SWE in predicting outcomes of ACLF-HBV was comparable to that of the MELD score (p = 0.441). MELD-SWE showed a significantly higher prognostic value than MELD in both derivation (AUROC, 0.80 vs. 0.76, p = 0.040) and validation (AUROC, 0.87 vs. 0.82, p = 0.018) group.

Conclusions

The MELD-SWE score, combining MELD and SWE values, was superior to MELD alone for outcoming prediction in patients with ACLF-HBV.

Key Points

2D SWE is a simple prognostic evaluation tool in patients with ACLF-HBV.

MELD-SWE was created in this study: 1.3×MELD + 0.3×2D SWE (kPa).

MELD-SWE score was superior to MELD alone for outcoming prediction in ACLF-HBV.

In this study, 46.8 was the optimal cut-off value of MELD-SWE score.

Keywords

Acute-on-chronic liver failure Elastography Prognosis End-stage liver disease Ultrasonography 

Abbreviations

2D SWE

Two-dimensional shear wave elastography

AASLD

American Association for the Study of Liver Diseases

ACLF-HBV

Acute-on-chronic hepatitis B liver failure

ACLF

Acute-on-chronic liver failure

ALB

Albumin

ALP

Alkaline phosphatase

ALT

Alanine aminotransferase

APASL

Asian Pacific Association for the Study of the Liver

AST

Aspartate aminotransferase

AUROC

Area under the receiver operating characteristic curve

CANONIC

Chronic Liver Failure Acute-on-Chronic Liver Failure in Cirrhosis

CHE

Total cholesterol

CI

Confidence interval

Cr

Serum creatinine

CTP

Child-Turcotte-Pugh

GGT

Gamma-glutamyl transpeptidase

HBeAg

Hepatitis B e antigen

HBsAg

Hepatitis B surface antigen

HBV DNA

Hepatitis B virus deoxyribonucleic acid

HBV

Hepatitis B virus

HGB

Haemoglobin

ICC

Intraclass correlation coefficient

INR

International normalized ratio

IQR

Interquartile range

KCH

King’s College Hospital

KE

Wei-Min Ke

kPa

Kilopascal

LSM

Liver stiffness measurement

LT

Liver transplantation

MELD

Model for End-stage Liver Disease

MELDNa

Model for End-stage Liver Disease score combined with Sodium

Na

Serum sodium

PLT

Platelet count

pSWE

Point shear wave elastography

PT

Prothrombin time

PTA

Prothrombin activity

ROI

Region of interest

SD

Standard deviation

TB

Total bilirubin

TE

Transient elastography

UNOS

United Network for Organ Sharing

US

Ultrasound

WBC

White blood cell

WHO

World Health Organization

Notes

Funding

This study has received funding by the Science and technology project of Guangdong Province (No. 2014A020212059), the Natural Science Fund of Guangdong province (No. 2015A030313172 and 2016A030313237), the Guangzhou city science and technology project (No. 201607010064).

Compliance with ethical standards

Guarantor

The scientific guarantor of this publication is Rongqin Zheng.

Conflict of interest

The authors of this manuscript declare no relationships with any companies whose products or services may be related to the subject matter of the article.

Statistics and biometry

No complex statistical methods were necessary for this paper.

Informed consent

Written informed consent was obtained from all subjects (patients) in this study.

Ethical approval

Institutional Review Board approval was obtained.

Methodology

• prospective

• diagnostic or prognostic study

• performed at one institution

Supplementary material

330_2018_5336_MOESM1_ESM.docx (34 kb)
ESM 1 (DOCX 33 kb)

References

  1. 1.
    Moreau R, Jalan R, Gines P et al (2013) Acute-on-chronic liver failure is a distinct syndrome that develops in patients with acute decompensation of cirrhosis. Gastroenterology 144(7):1426–1437CrossRefGoogle Scholar
  2. 2.
    Sarin SK, Kedarisetty CK, Abbas Z et al (2014) Acute-on-chronic liver failure: consensus recommendations of the Asian Pacific Association for the Study of the Liver (APASL) 2014. Hepatol Int 8(4):453–471CrossRefGoogle Scholar
  3. 3.
    World Health Organization (2015) Guidelines for the prevention, care and treatment of persons with chronic hepatitis B infection. WHO, GenevaGoogle Scholar
  4. 4.
    Bernal W, Jalan R, Quaglia A, Simpson K, Wendon J, Burroughs A (2015) Acute-on-chronic liver failure. Lancet 386(10003):1576–1587CrossRefGoogle Scholar
  5. 5.
    Gustot T, Fernandez J, Garcia E et al (2015) Clinical course of acute-on-chronic liver failure syndrome and effects on prognosis. Hepatology 62(1):243–252CrossRefGoogle Scholar
  6. 6.
    Kamath PS, Wiesner RH, Malinchoc M et al (2001) A model to predict survival in patients with end-stage liver disease. Hepatology 33(2):464–470CrossRefGoogle Scholar
  7. 7.
    Malinchoc M, Kamath PS, Gordon FD, Peine CJ, Rank J, ter Borg PCJ (2000) A model to predict poor survival in patients undergoing transjugular intrahepatic portosystemic shunts. Hepatology 31(4):864–871CrossRefGoogle Scholar
  8. 8.
    Martin P, DiMartini A, Feng S, Brown R, Fallon M (2014) Evaluation for liver transplantation in adults: 2013 practice guideline by the American Association for the Study of Liver Diseases and the American Society of Transplantation. Hepatology 59(3):1144–1165CrossRefGoogle Scholar
  9. 9.
    Barr RG, Ferraioli G, Palmeri ML et al (2015) Elastography assessment of liver fibrosis: Society of Radiologists in ultrasound consensus conference statement. Radiology 276(3):845–861CrossRefGoogle Scholar
  10. 10.
    Dietrich CF, Bamber J, Berzigotti A et al (2017) EFSUMB Guidelines and Recommendations on the Clinical Use of Liver Ultrasound Elastography, Update 2017 (Long Version). Ultraschall Med 38(4):e16–e47CrossRefGoogle Scholar
  11. 11.
    Ferraioli G, Filice C, Castera L et al (2015) WFUMB guidelines and recommendations for clinical use of ultrasound Elastography: Part 3: Liver. Ultrasound Med Biol 41(5):1161–1179CrossRefGoogle Scholar
  12. 12.
    Dechêne A, Sowa JP, Gieseler RK et al (2010) Acute liver failure is associated with elevated liver stiffness and hepatic stellate cell activation. Hepatology 52(3):1008–1016CrossRefGoogle Scholar
  13. 13.
    Karlas TF, Pfrepper C, Rosendahl J et al (2011) Acoustic radiation force impulse (ARFI) elastography in acute liver failure: necrosis mimics cirrhosis. Z Gastroenterol 49(4):443–448CrossRefGoogle Scholar
  14. 14.
    Kuroda H, Kakisaka K, Oikawa T et al (2015) Liver stiffness measured by acoustic radiation force impulse elastography reflects the severity of liver damage and prognosis in patients with acute liver failure. Hepatol Res 45(5):571–577CrossRefGoogle Scholar
  15. 15.
    Sharma P, Bansal R, Matin A et al (2015) Role of transient Elastography (Fibroscan) in differentiating severe acute hepatitis and acute on chronic liver failure. J Clin Exp Hepatol 5(4):303–309CrossRefGoogle Scholar
  16. 16.
    Bamber J, Cosgrove D, Dietrich C et al (2013) EFSUMB guidelines and recommendations on the clinical use of ultrasound Elastography. Part 1: Basic principles and technology. Ultraschall in der Medizin. Eur J Ultrasound 34:169–184Google Scholar
  17. 17.
    Stravitz RT, Kramer AH, Davern T et al (2007) Intensive care of patients with acute liver failure: recommendations of the U.S. Acute Liver Failure Study Group. Crit Care Med 35(11):2498–2508CrossRefGoogle Scholar
  18. 18.
    Castéra L, Foucher J, Bernard PH et al (2010) Pitfalls of liver stiffness measurement: A 5-year prospective study of 13,369 examinations. Hepatology 51(3):828–835PubMedGoogle Scholar
  19. 19.
    Zheng J, Guo HY, Zeng J et al (2015) Two-dimensional shear-wave elastography and conventional US: the optimal evaluation of liver fibrosis and cirrhosis. Radiology 275(1):290–300CrossRefGoogle Scholar
  20. 20.
    Kim WR, Biggins SW, Kremers WK et al (2008) Hyponatremia and mortality among patients on the liver-transplant waiting list. N Engl J Med 359(10):1018–1026CrossRefGoogle Scholar
  21. 21.
    Pugh RNH, Murray-Lyon IM, Dawson JL et al (1973) Transection of the oesophagus for bleeding oesophageal varices. Br J Surg 60(8):646–649CrossRefGoogle Scholar
  22. 22.
    O’Grady JG, Alexander GJM, Hayllar KM et al (1989) Early indicators of prognosis in fulminant hepatic failure. Gastroenterology 97(2):439–445CrossRefGoogle Scholar
  23. 23.
    Zheng YB, Xie SB, Xie DY et al (2012) A Novel prognostic scoring system to predict 3-month mortality risk in patients with acute-on-chronic liver failure in hepatitis B: a retrospective cohort study. Hepatol Int 6(4):727–734CrossRefGoogle Scholar
  24. 24.
    Poynard T, Munteanu M, Luckina E et al (2013) Liver fibrosis evaluation using real-time shear wave elastography: applicability and diagnostic performance using methods without a gold standard. J Hepatol 58(5):928–935CrossRefGoogle Scholar
  25. 25.
    Bavu E, Gennisson JL, Couade M et al (2011) Noninvasive in vivo liver fibrosis evaluation using supersonic shear imaging: A Clinical Study on 113 hepatitis C virus patients. Ultrasound Med Biol 37(9):1361–1373CrossRefGoogle Scholar
  26. 26.
    Cassinotto C, Lapuyade B, Mouries A et al (2014) Non-invasive assessment of liver fibrosis with impulse elastography: comparison of Supersonic Shear Imaging with ARFI and FibroScan. J Hepatol 61(3):550–557CrossRefGoogle Scholar
  27. 27.
    Ferraioli G, Tinelli C, Dal Bello B, Zicchetti M, Filice G, Filice C (2012) Accuracy of real-time shear wave elastography for assessing liver fibrosis in chronic hepatitis C: a pilot study. Hepatology 56(6):2125–2133CrossRefGoogle Scholar
  28. 28.
    Leung VY, Shen J, Wong VW et al (2013) Quantitative elastography of liver fibrosis and spleen stiffness in chronic hepatitis B carriers: comparison of shear-wave elastography and transient elastography with liver biopsy correlation. Radiology 269(3):910–918CrossRefGoogle Scholar
  29. 29.
    Huang ZP, Zhang XL, Zeng J, Zheng J, Wang P, Zheng RQ (2014) Study of detection times for liver stiffness evaluation by shear wave elastography. World J Gastroenterol 20(28):9578–9584CrossRefGoogle Scholar
  30. 30.
    Huang ZP, Zheng J, Zeng J, Wang XL, Wu T, Zheng RQ (2014) Normal liver stiffness in healthy adults assessed by real-time shear wave Elastography and factors that influence this method. Ultrasound Med Biol 40(11):2549–2555CrossRefGoogle Scholar
  31. 31.
    Wang CZ, Zheng J, Huang ZP et al (2014) Influence of measurement depth on the stiffness assessment of healthy liver with real-time shear wave Elastography. Ultrasound Med Biol 40(3):461–469CrossRefGoogle Scholar
  32. 32.
    Zheng RQ, Wang QH, Lu MD et al (2003) Liver fibrosis in chronic viral hepatitis: an ultrasonographic study. World J Gastroenterol 9(11):2484–2489CrossRefGoogle Scholar
  33. 33.
    Liang XE, Chen YP, Zhang Q, Dai L, Zhu YF, Hou JL (2011) Dynamic evaluation of liver stiffness measurement to improve diagnostic accuracy of liver cirrhosis in patients with chronic hepatitis B acute exacerbation. J Viral Hepat 18(12):884–891CrossRefGoogle Scholar
  34. 34.
    Durand F, Valla D (2005) Assessment of the prognosis of cirrhosis: child-Pugh versus MELD. J Hepatol 42(1):S100–S107CrossRefGoogle Scholar
  35. 35.
    Zipprich A, Kuss O, Rogowski S et al (2010) Incorporating indocyanin green clearance into the Model for End Stage Liver disease (MELD-ICG) improves prognostic accuracy in intermediate to advanced cirrhosis. Gut 59(7):963–968CrossRefGoogle Scholar

Copyright information

© European Society of Radiology 2018

Authors and Affiliations

  • Jie-Yang Jin
    • 1
    • 2
  • Yu-Bao Zheng
    • 2
    • 3
  • Jian Zheng
    • 1
    • 2
  • Jing Liu
    • 2
    • 3
  • Yong-Jiang Mao
    • 1
    • 2
  • Shi-Gao Chen
    • 4
  • Zhi-Liang Gao
    • 2
    • 3
  • Rong-Qin Zheng
    • 1
    • 2
  1. 1.Department of Medical Ultrasonicsthe Third Affiliated Hospital of Sun Yat-Sen UniversityGuangzhouChina
  2. 2.GuangDong Key Laboratory of Liver Disease Researchthe Third Affiliated Hospital of Sun Yat-Sen UniversityGuangzhouChina
  3. 3.Department of Infectious Diseasesthe Third Affiliated Hospital of Sun Yat-Sen UniversityGuangzhouChina
  4. 4.Department of Physiology and Biomedical EngineeringMayo Clinic College of MedicineRochesterUSA

Personalised recommendations