European Radiology

, Volume 28, Issue 9, pp 3943–3952 | Cite as

Vertebral metastases from neuroendocrine tumours: How to avoid false positives on 68Ga-DOTA-TOC PET using CT pattern analysis?

  • Mathieu Gauthé
  • Nathalie Testart Dardel
  • Fernando Ruiz Santiago
  • Jessica Ohnona
  • Valérie Nataf
  • Françoise Montravers
  • Jean-Noël Talbot



To develop criteria to improve discrimination between vertebral metastases from neuroendocrine tumours (NETs) and benign bone lesions on PET combined with CT using DOTA-D-Phe1-Tyr3-octreotide labelled with gallium-68 (68Ga-DOTA-TOC).


In 535 NET patients, 68Ga-DOTA-TOC PET/CT examinations were reviewed retrospectively for vertebral CT lesions and/or PET foci. For each vertebral PET abnormality, appearance on CT, biological volume (BV), standardized uptake value (SUVmax) and ratios to those of reference organs were determined. All vertebral abnormalities were characterized as a metastasis, a typical vertebral haemangioma (VH) or other benign lesion.


In 79 patients (14.8 %), we found 107 metastases, 34 VHs and 31 other benign lesions in the spine. The optimal cut-off values to differentiate metastases from benign lesions were BV ≥0.72 cm3, SUVmax ≥2, SUVmax ratio to a reference vertebra ≥2.1, to liver ≥0.28 and to spleen ≥0.14. They corresponded to lesion-based 68Ga-DOTA-TOC PET/CT sensitivity of 87 %, 98 %, 97 %, 99 % and 94 %, and specificity of 55 %, 100 %, 90 %, 97 %, 100 %, respectively.


The high sensitivity of 68Ga-DOTA-TOC-PET/CT in detecting NET vertebral metastases was confirmed; this study showed that specificity could be improved by combining CT features and quantifying 68Ga-DOTA-TOC uptake.

Key Points

• Bone metastases in neuroendocrine tumours correlate with prognosis.

• Benign bone lesions may mimic metastases on 68 Ga-DOTA-TOC PET/CT imaging.

• The specific polka-dot CT pattern may be missing in some vertebral haemangiomas.

• Lesion atypical for haemangiomas can be better characterized by quantifying 68 Ga-DOTA-TOC uptake.


Neuroendocrine tumours Haemangioma PET/CT Incidental findings Spinal neoplasms 



Area under the curve


Biological volume


Computed tomography


1,4,7,10-tetraazacyclododecane-1,4,7,10-tetraacetic acid








Magnetic resonance imaging


Neuroendocrine tumour


Negative predictive value


Ordered Subsets Expectation-Maximization


Positron emission tomography


Positive predictive value


Receiver operating characteristic


Reference vertebra




Standard of truth




Somatostatin receptor


Somatostatin receptors subtype 2


Standardized uptake value




Vertebral haemangioma


Volume of interest



This study includes the data of a ‘Projet de recherche clinique’ PHRC P040303 sponsored by Assistance Publique-Hôpitaux de Paris monitored by Mrs Zakia Idir. We acknowledge the help of the Cancer Est Clinical Research Assistants during the clinical trial. We thank the referring physicians for their confidence and the medical technologists of our department for their commitment to PET/CT imaging. We thank Professor Ralph McCready for his assistance with editing the manuscript.


The authors state that this retrospective analysis of data of a prospective series has not received any funding.

Compliance with ethical standards


The scientific guarantor of this publication is Prof. J.N. Talbot.

Conflict of interest

The authors of this manuscript declare no relationships with any companies whose products or services may be related to the subject matter of the article.

Statistics and biometry

One of the authors has significant statistical expertise.

No complex statistical methods were necessary for this paper.

Informed consent

Written informed consent was obtained from all subjects (patients) in this study.

Ethical approval

Institutional Review Board approval was obtained.


• retrospective

• diagnostic study

• performed at one institution


  1. 1.
    Ross EM, Roberts WC (1985) The carcinoid syndrome: comparison of 21 necropsy subjects with carcinoid heart disease to 15 necropsy subjects without carcinoid heart disease. Am J Med 79:339–354CrossRefPubMedGoogle Scholar
  2. 2.
    Panzuto F, Nasoni S, Falconi M et al (2005) Prognostic factors and survival in endocrine tumor patients: comparison between gastrointestinal and pancreatic localization. Endocr Relat Cancer 12:1083–1092CrossRefPubMedGoogle Scholar
  3. 3.
    Skoura E, Michopoulou S, Mohmaduvesh M et al (2016) The impact of 68Ga-DOTATATE PET/CT imaging on management of patients with neuroendocrine tumors: experience from a national referral center in the United Kingdom. J Nucl Med 57:34–40CrossRefPubMedGoogle Scholar
  4. 4.
    Albanus DR, Apitzsch J, Erdem Z et al (2015) Clinical value of 68Ga-DOTATATE-PET/CT compared to stand-alone contrast enhanced CT for the detection of extra-hepatic metastases in patients with neuroendocrine tumours (NET). Eur J Radiol 84:1866–1872CrossRefPubMedGoogle Scholar
  5. 5.
    Putzer D, Gabriel M, Henninger B et al (2009) Bone metastases in patients with neuroendocrine tumor: 68Ga-DOTA-Tyr3-Octreotide PET in comparison to CT and bone scintigraphy. J Nucl Med 50:1214–1221CrossRefPubMedGoogle Scholar
  6. 6.
    Kroiss A, Putzer D, Decristoforo C et al (2013) 68Ga-DOTA-TOC uptake in neuroendocrine tumour and healthy tissue: differentiation of physiological uptake and pathological processes in PET/CT. Eur J Nucl Med Mol Imaging 40:514–523CrossRefPubMedGoogle Scholar
  7. 7.
    Prasad V, Baum RP (2010) Biodistribution of the Ga-68 labeled somatostatin analogue DOTA-NOC in patients with neuroendocrine tumors: characterization of uptake in normal organs and tumor lesions. Q J Nucl Med Mol Imaging 54:61–67PubMedGoogle Scholar
  8. 8.
    Ambrosini V, Nanni C, Zompatori M et al (2010) (68)Ga-DOTA-NOC PET/CT in comparison with CT for the detection of bone metastasis in patients with neuroendocrine tumours. Eur J Nucl Med Mol Imaging 37:722–727CrossRefPubMedGoogle Scholar
  9. 9.
    Gabriel M, Decristoforo C, Kendler D et al (2007) 68Ga-DOTA-Tyr3-Octreotide PET in neuroendocrine tumors: comparison with somatostatin receptor scintigraphy and CT. J Nucl Med 48:508–518CrossRefPubMedGoogle Scholar
  10. 10.
    Van Binnebeek S, Vanbilloen B, Baete K et al (2016) Comparison of diagnostic accuracy of 111In-pentetreotide SPECT and 68Ga-DOTATOC PET/CT: A lesion-by-lesion analysis in patients with metastatic neuroendocrine tumours. Eur Radiol 26:900–909CrossRefPubMedGoogle Scholar
  11. 11.
    Slon V, Stein D, Cohen H et al (2015) Vertebral hemangiomas: their demographical characteristics, location along the spine and position within the vertebral body. Eur Spine J 24:2189–2195CrossRefPubMedGoogle Scholar
  12. 12.
    Gaudino S, Martucci M, Colantonio R et al (2015) A systematic approach to vertebral hemangioma. Skeletal Radiol 44:25–36CrossRefPubMedGoogle Scholar
  13. 13.
    Gilardi L, Vadrucci M, Grana CM (2017) Multiple vertebral hemangiomas: a potential pitfall in 68Ga-DOTATOC PET/CT interpretation. Endocrine 55:992–993CrossRefPubMedGoogle Scholar
  14. 14.
    Skoura E, Alshammari A, Syed R et al (2015) Adolescent with 68Ga DOTATATE–avid vertebral hemangioma mimicking metastasis in PET imaging. Clin Nucl Med 40:e378–e379CrossRefPubMedGoogle Scholar
  15. 15.
    Brogsitter C, Hofmockel T, Kotzerke J (2014) 68Ga DOTATATE uptake in vertebral hemangioma. Clin Nucl Med 39:462–463CrossRefPubMedGoogle Scholar
  16. 16.
    Klinaki I, Al-Nahhas A, Soneji N, Win Z (2013) 68Ga DOTATATE PET/CT uptake in spinal lesions and MRI correlation on a patient with neuroendocrine tumor: potential pitfalls. Clin Nucl Med 38:e449–e453CrossRefPubMedGoogle Scholar
  17. 17.
    Persaud T (2008) The Polka-dot sign. Radiology 246:980–981CrossRefPubMedGoogle Scholar
  18. 18.
    Erlemann R (2006) Imaging and differential diagnosis of primary bone tumors and tumor-like lesions of the spine. Eur J Radiol 58:48–67CrossRefPubMedGoogle Scholar
  19. 19.
    Balogova S, Talbot J-N, Nataf V et al (2013) 18F-fluorodihydroxyphenylalanine vs other radiopharmaceuticals for imaging neuroendocrine tumours according to their type. Eur J Nucl Med Mol Imaging 40:943–966CrossRefPubMedPubMedCentralGoogle Scholar
  20. 20.
    Thapa P, Ranade R, Ostwal V et al (2016) Performance of 177Lu-DOTATATE-based peptide receptor radionuclide therapy in metastatic gastroenteropancreatic neuroendocrine tumor: a multiparametric response evaluation correlating with primary tumor site, tumor proliferation index, and dual tracer imaging characteristics. Nucl Med Commun 37:1030–1037CrossRefPubMedGoogle Scholar
  21. 21.
    Grillo F, Albertelli M, Brisigotti MP et al (2016) Grade increases in gastroenteropancreatic neuroendocrine tumor metastases compared to the primary tumor. Neuroendocrinology 103:452–459CrossRefPubMedGoogle Scholar
  22. 22.
    Bucy PC (1929) The pathology of hemangioma of bone. Am J Pathol 5:381–388PubMedPubMedCentralGoogle Scholar
  23. 23.
    Adams RL, Adams IP, Lindow SW et al (2005) Somatostatin receptors 2 and 5 are preferentially expressed in proliferating endothelium. Br J Cancer 92:1493–1498CrossRefPubMedPubMedCentralGoogle Scholar
  24. 24.
    Makhija M, Bofill ER (1988) Hemangioma, a rare cause of photopenic lesion on skeletal imaging. Clin Nucl Med 13:661–662CrossRefPubMedGoogle Scholar
  25. 25.
    Jaimini A, D’Souza MM, Seniaray N et al (2016) Characterization of ‘cold’ vertebrae on 18F-FDG PET/CT. Nucl Med Commun 37:30–42PubMedGoogle Scholar
  26. 26.
    Domínguez M, Rayo J, Serrano J et al (2011) Vertebral hemangioma: ‘Cold’ vertebrae on bone scintigraphy and fluordeoxy-glucose positron emission tomography-computed tomography. Indian J Nucl Med 26:49–51PubMedPubMedCentralGoogle Scholar
  27. 27.
    Savelli G, Perotti V, Rosso E et al (2016) 18F-fluorocholine PET/CT finding of a vertebral hemangioma. Clin Nucl Med 41:e390–e391CrossRefPubMedGoogle Scholar
  28. 28.
    Nakayama M, Okizaki A, Ishitoya S, Aburano T (2012) ‘Hot’ vertebra on 18F-FDG PET scan: a case of vertebral hemangioma. Clin Nucl Med 37:1190–1193CrossRefPubMedGoogle Scholar
  29. 29.
    Kazmierczak PM, Rominger A, Wenter V et al (2017) The added value of 68Ga-DOTA-TATE-PET to contrast-enhanced CT for primary site detection in CUP of neuroendocrine origin. Eur Radiol 27:1676–1684CrossRefPubMedGoogle Scholar
  30. 30.
    Cives M, Rizzo F, Simone V et al (2016) Reviewing the osteotropism in neuroendocrine tumors: The role of epithelial-mesenchymal transition. Neuroendocrinology 103:321–334CrossRefPubMedGoogle Scholar
  31. 31.
    Van Loon K, Zhang L, Keiser J et al (2015) Bone metastases and skeletal-related events from neuroendocrine tumors. Endocr Connect 4:9–17CrossRefPubMedPubMedCentralGoogle Scholar
  32. 32.
    Gauthé M, Richard-Molard M, Fayard J et al (2017) Prognostic impact of tumour burden assessed by metabolic tumour volume on FDG PET/CT in anal canal cancer. Eur J Nucl Med Mol Imaging 44:63–70CrossRefPubMedGoogle Scholar
  33. 33.
    Dibble EH, Alvarez ACL, Truong M-T et al (2012) 18F-FDG metabolic tumor volume and total glycolytic activity of oral cavity and oropharyngeal squamous cell cancer: adding value to clinical staging. J Nucl Med 53:709–715CrossRefPubMedGoogle Scholar
  34. 34.
    Riihimäki M, Hemminki A, Sundquist K et al (2016) The epidemiology of metastases in neuroendocrine tumors. Int J Cancer 139:2679–2686CrossRefPubMedGoogle Scholar

Copyright information

© European Society of Radiology 2018

Authors and Affiliations

  • Mathieu Gauthé
    • 1
    • 2
  • Nathalie Testart Dardel
    • 3
  • Fernando Ruiz Santiago
    • 4
  • Jessica Ohnona
    • 1
    • 2
  • Valérie Nataf
    • 1
    • 2
  • Françoise Montravers
    • 1
    • 2
  • Jean-Noël Talbot
    • 1
    • 2
  1. 1.Médecine NucléaireHôpital TenonParisFrance
  2. 2.Université P&M CurieParisFrance
  3. 3.Nuclear MedicineCHU de GranadaGranadaSpain
  4. 4.Radiology DepartmentCHU de GranadaGranadaSpain

Personalised recommendations