Skip to main content
Log in

Larger volume and different functional connectivity of the amygdala in women with premenstrual syndrome

  • Magnetic Resonance
  • Published:
European Radiology Aims and scope Submit manuscript

Abstract

Objectives

To assess structural and functional changes of the amygdala due to premenstrual syndrome (PMS) using magnetic resonance imaging (MRI).

Methods

Twenty PMS patients and 21 healthy control (HC) subjects underwent a 6-min resting-state fMRI scan during the luteal phase as well as scanning high-resolution T1-weighted images. Subcortical amygdala-related volume and functional connectivity (FC) were estimated between the two groups. Each subject completed a daily record of severity of problems (DRSP) to measure the severity of clinical symptoms.

Results

Greater bilateral amygdalae volumes were found in PMS patients compared with HC subjects, and PMS patients had increased FC between the amygdala and certain regions of the frontal cortex (e.g. medial prefrontal cortex (mPFC), anterior cingulate cortex (ACC), right precentral gyrus), the right temporal pole and the insula, as well as decreased FC between the bilateral amygdalae and the right orbitofrontal cortex and right hippocampus. The strength of FC between the right amygdala and right precentral gyrus, left ACC and left mPFC were significantly and positively correlated with DRSP scores in PMS patients.

Conclusions

Our findings may improve our understanding of the neural mechanisms involved in PMS.

Key Points

Functional and structural MRI used to explore amygdala in PMS patients.

Aberrant amygdala structural and functional connectivity were found in PMS patients.

Amygdala strength FC was positively correlated with individual clinical symptom scores.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

Abbreviations

ACC:

Anterior cingulate cortex

AN:

Affective network

BMI:

Body mass index

BOLD:

Blood oxygenation level dependent

DMN:

Default mode network

DRSP:

Daily record of severity of problems

DSM-5:

Diagnostic and Statistical Manual of Mental Disorders-5th Edition

EPI:

Echo planar imaging

fMRI:

Functional magnetic resonance imaging

FOV:

Field of view

HC:

Healthy control

HIPP:

Hippocampus

mPFC:

Medial prefrontal cortex

OFC:

Orbitofrontal cortex

PMDD:

Premenstrual dysphoric disorder

PMS:

Premenstrual syndrome

ROI:

Region of interest

rs-fMRI:

Resting-state functional magnetic resonance imaging

TE:

Echo time

TR:

Repetition time

References

  1. Lisofsky N, Lindenberger U, Kuhn S (2015) Amygdala/hippocampal activation during the menstrual cycle: evidence for lateralization of effects across different tasks. Neuropsychologia 67:55–62

    Article  PubMed  Google Scholar 

  2. Ossewaarde L, van Wingen GA, Rijpkema M et al (2013) Menstrual cycle-related changes in amygdala morphology are associated with changes in stress sensitivity. Hum Brain Mapp 34:1187–1193

    Article  PubMed  Google Scholar 

  3. Sundstrom Poromaa I, Gingnell M (2014) Menstrual cycle influence on cognitive function and emotion processing-from a reproductive perspective. Front Neurosci 8:380

    PubMed  PubMed Central  Google Scholar 

  4. Cooke BM, Breedlove SM, Jordan CL (2003) Both estrogen receptors and androgen receptors contribute to testosterone-induced changes in the morphology of the medial amygdala and sexual arousal in male rats. Horm Behav 43:336–346

    Article  CAS  PubMed  Google Scholar 

  5. Greco B, Allegretto EA, Tetel MJ et al (2001) Coexpression of ER beta with ER alpha and progestin receptor proteins in the female rat forebrain: effects of estradiol treatment. Endocrinology 142:5172–5181

    Article  CAS  PubMed  Google Scholar 

  6. Bayer J, Schultz H, Gamer M et al (2014) Menstrual-cycle dependent fluctuations in ovarian hormones affect emotional memory. Neurobiol Learn Mem 110:55–63

    Article  CAS  PubMed  Google Scholar 

  7. Ryu A, Kim TH (2015) Premenstrual syndrome: A mini review. Maturitas 82:436–440

    Article  PubMed  Google Scholar 

  8. Tolossa FW, Bekele ML (2014) Prevalence, impacts and medical managements of premenstrual syndrome among female students: cross-sectional study in College of Health Sciences, Mekelle University, Mekelle, northern Ethiopia. BMC Womens Health 14:52

    Article  PubMed  PubMed Central  Google Scholar 

  9. Yonkers KA, O'Brien PM, Eriksson E (2008) Premenstrual syndrome. Lancet 371:1200–1210

    Article  PubMed  PubMed Central  Google Scholar 

  10. Halbreich U (2003) The etiology, biology, and evolving pathology of premenstrual syndromes. Psychoneuroendocrinology 28:55–99

    Article  CAS  Google Scholar 

  11. Simons LE, Moulton EA, Linnman C et al (2014) The human amygdala and pain: evidence from neuroimaging. Hum Brain Mapp 35:527–538

    Article  PubMed  Google Scholar 

  12. Etkin A, Wager TD (2007) Functional neuroimaging of anxiety: a meta-analysis of emotional processing in PTSD, social anxiety disorder, and specific phobia. Am J Psychiatry 164:1476–1488

    Article  PubMed  PubMed Central  Google Scholar 

  13. Murray EA, Wise SP, Drevets WC (2011) Localization of dysfunction in major depressive disorder: prefrontal cortex and amygdala. Biol Psychiatry 69:e43–e54

    Article  PubMed  Google Scholar 

  14. Bornhovd K, Quante M, Glauche V et al (2002) Painful stimuli evoke different stimulus-response functions in the amygdala, prefrontal, insula and somatosensory cortex: a single-trial fMRI study. Brain 125:1326–1336

    Article  CAS  PubMed  Google Scholar 

  15. Protopopescu X, Tuescher O, Pan H et al (2008) Toward a functional neuroanatomy of premenstrual dysphoric disorder. J Affect Disord 108:87–94

    Article  PubMed  Google Scholar 

  16. Neugebauer V (2007) The amygdala: different pains, different mechanisms. Pain 127:1–2

    Article  PubMed  Google Scholar 

  17. Greicius MD, Flores BH, Menon V et al (2007) Resting-state functional connectivity in major depression: abnormally increased contributions from subgenual cingulate cortex and thalamus. Biol Psychiatry 62:429–437

    Article  PubMed  PubMed Central  Google Scholar 

  18. Hutton C, Draganski B, Ashburner J et al (2009) A comparison between voxel-based cortical thickness and voxel-based morphometry in normal aging. Neuroimage 48:371–380

    Article  PubMed  PubMed Central  Google Scholar 

  19. Liu Q, Li R, Zhou R et al (2015) Abnormal Resting-State Connectivity at Functional MRI in Women with Premenstrual Syndrome. PLoS One 10:e0136029

    Article  PubMed  PubMed Central  Google Scholar 

  20. Du M, Liu J, Chen Z et al (2014) Brain grey matter volume alterations in late-life depression. J Psychiatry Neurosci 39:397–406

    Article  PubMed  PubMed Central  Google Scholar 

  21. Talati A, Pantazatos SP, Schneier FR et al (2013) Gray matter abnormalities in social anxiety disorder: primary, replication, and specificity studies. Biol Psychiatry 73:75–84

    Article  PubMed  Google Scholar 

  22. Jeong HG, Ham BJ, Yeo HB et al (2012) Gray matter abnormalities in patients with premenstrual dysphoric disorder: an optimized voxel-based morphometry. J Affect Disord 140:260–267

    Article  PubMed  Google Scholar 

  23. Endicott J, Nee J, Harrison W (2006) Daily Record of Severity of Problems (DRSP): reliability and validity. Arch Womens Ment Health 9:41–49

    Article  CAS  PubMed  Google Scholar 

  24. Shehata NA (2016) Calcium versus oral contraceptive pills containing drospirenone for the treatment of mild to moderate premenstrual syndrome: a double blind randomized placebo controlled trial. Eur J Obstet Gynecol Reprod Biol 198:100–104

    Article  CAS  PubMed  Google Scholar 

  25. Halbreich U, Backstrom T, Eriksson E et al (2007) Clinical diagnostic criteria for premenstrual syndrome and guidelines for their quantification for research studies. Gynecol Endocrinol 23:123–130

    Article  PubMed  Google Scholar 

  26. Us APAAV (2013) Desk reference to the diagnostic criteria from DSM-5™. American Psychiatric Publishing 2013:7

  27. Bao AM, Ji YF, Van Someren EJ et al (2004) Diurnal rhythms of free estradiol and cortisol during the normal menstrual cycle in women with major depression. Horm Behav 45:93–102

    Article  CAS  PubMed  Google Scholar 

  28. Yuan K, Zhao L, Cheng P et al (2013) Altered structure and resting-state functional connectivity of the basal ganglia in migraine patients without aura. J Pain 14:836–844

    Article  PubMed  Google Scholar 

  29. Hermel EE, Ilha J, Xavier LL et al (2006) Influence of sex and estrous cycle, but not laterality, on the neuronal somatic volume of the posterodorsal medial amygdala of rats. Neurosci Lett 405:153–158

    Article  CAS  PubMed  Google Scholar 

  30. McEwen BS, Magarinos AM, Reagan LP (2002) Studies of hormone action in the hippocampal formation: possible relevance to depression and diabetes. J Psychosom Res 53:883–890

    Article  PubMed  Google Scholar 

  31. Drevets WC, Price JL, Furey ML (2008) Brain structural and functional abnormalities in mood disorders: implications for neurocircuitry models of depression. Brain Struct Funct 213:93–118

    Article  PubMed  PubMed Central  Google Scholar 

  32. Frodl T, Meisenzahl E, Zetzsche T et al (2002) Enlargement of the amygdala in patients with a first episode of major depression. Biol Psychiatry 51:708–714

    Article  PubMed  Google Scholar 

  33. Cooke BM (2006) Steroid-dependent plasticity in the medial amygdala. Neuroscience 138:997–1005

    Article  CAS  PubMed  Google Scholar 

  34. Gusnard DA, Raichle ME, Raichle ME (2001) Searching for a baseline: functional imaging and the resting human brain. Nat Rev Neurosci 2:685–694

    Article  CAS  PubMed  Google Scholar 

  35. Ji G, Sun H, Fu Y et al (2010) Cognitive impairment in pain through amygdala-driven prefrontal cortical deactivation. J Neurosci 30:5451–5464

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Davidson RJ (2002) Anxiety and affective style: role of prefrontal cortex and amygdala. Biol Psychiatry 51:68–80

    Article  PubMed  Google Scholar 

  37. Lenze EJ (2003) Comorbidity of depression and anxiety in the elderly. Curr Psychiatry Rep 5:62–67

    Article  PubMed  Google Scholar 

  38. Zhuo M (2016) Contribution of synaptic plasticity in the insular cortex to chronic pain. Neuroscience 338:220–229

    Article  CAS  PubMed  Google Scholar 

  39. Chen Z, Chen X, Liu M et al (2017) Altered functional connectivity of amygdala underlying the neuromechanism of migraine pathogenesis. J Headache Pain 18:7

    Article  PubMed  PubMed Central  Google Scholar 

  40. Schweinhardt P, Bushnell MC (2010) Pain imaging in health and disease--how far have we come? J Clin Invest 120:3788–3797

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Martucci KT, Mackey SC (2016) Imaging Pain. Anesthesiol Clin 34:255–269

    Article  PubMed  PubMed Central  Google Scholar 

  42. Baur V, Hanggi J, Langer N et al (2013) Resting-state functional and structural connectivity within an insula-amygdala route specifically index state and trait anxiety. Biol Psychiatry 73:85–92

    Article  PubMed  Google Scholar 

  43. Mufson EJ, Mesulam MM, Pandya DN (1981) Insular interconnections with the amygdala in the rhesus monkey. Neuroscience 6:1231–1248

    Article  CAS  PubMed  Google Scholar 

  44. Lesting J, Narayanan RT, Kluge C et al (2011) Patterns of coupled theta activity in amygdala-hippocampal-prefrontal cortical circuits during fear extinction. PLoS One 6:e21714

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Etkin A, Egner T, Kalisch R (2011) Emotional processing in anterior cingulate and medial prefrontal cortex. Trends Cogn Sci 15:85–93

    Article  PubMed  Google Scholar 

  46. Toazza R, Franco AR, Buchweitz A et al (2016) Amygdala-based intrinsic functional connectivity and anxiety disorders in adolescents and young adults. Psychiatry Res 257:11–16

    Article  PubMed  Google Scholar 

Download references

Funding

The present study was supported by the Guangxi Natural Science Foundation [Grant No. 2017JJB10213, 2016GXNSFAA380086, 2011GXNSFA018176] and National Natural Science Foundation of China [Grant No. 81760886, 81471738, 81303060].

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Demao Deng.

Ethics declarations

Guarantor

The scientific guarantor of this publication is Demao Deng.

Conflict of interest

The authors of this manuscript declare no relationships with any companies whose products or services may be related to the subject matter of the article.

Informed consent

All participants were informed about the experimental procedure and provided written informed consent.

Ethical approval

The study was approved by the Medicine Ethics Committee of First Affiliated Hospital, Guangxi University of Chinese Medicine, Guangxi, China.

Methodology

• prospective

• case-control study

• performed at one institution

Electronic supplementary material

ESM 1

(DOC 74 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Deng, D., Pang, Y., Duan, G. et al. Larger volume and different functional connectivity of the amygdala in women with premenstrual syndrome. Eur Radiol 28, 1900–1908 (2018). https://doi.org/10.1007/s00330-017-5206-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00330-017-5206-0

Keywords

Navigation