European Radiology

, Volume 28, Issue 5, pp 2228–2235 | Cite as

Evaluation of vertebral body fractures using susceptibility-weighted magnetic resonance imaging

  • Sarah M. Böker
  • Lisa C. Adams
  • Yvonne Y. Bender
  • Moritz Wagner
  • Torsten Diekhoff
  • Eva Fallenberg
  • Bernd Hamm
  • Marcus R. Makowski
Musculoskeletal
  • 87 Downloads

Abstract

Purpose

To test the diagnostic performance of susceptibility-weighted MRI (sMRI) for the evaluation of vertebral body fractures versus standard MRI-sequences, using CT as reference standard.

Methods

In this prospective study 88 vertebral fractures (45 healed, 43 non-healed) were detected in 39 patients who underwent T1/T2/TIRM MRI-sequences and sMRI. All fractures were evaluated with CT as reference standard. In all modalities/sequences, displacement and height of the posterior vertebral body cortex and visibility of fracture lines and cortical breaks were assessed. Sensitivity, specificity and inter-reader agreement between MRI and CT were calculated.

Results

sMRI demonstrated highest diagnostic accuracy for detection of posterior vertebral body cortex involvement (sensitivity: 98 %/specificity: 100 %), fracture lines (86 %/99 %) and cortical breaks (93 %/100 %) versus T1/T2/TIRM sequences. Regarding evaluation of posterior vertebral body cortex displacement and height, sMRI demonstrated the closest intermodality agreement (R2=0.96; 95 % CI -0.92–0.89/R2=0.97; 95 % CI -1.67–1.23) with CT and the closest interobserver agreement (R2=0.97; 95 % CI -0.71–1.01).

Conclusion

sMRI allows reliable evaluation of vertebral body fractures with regard to posterior vertebral body cortex displacement and height, cortical breaks and fracture lines with higher accuracy versus standard MRI, especially in patients with non-healed vertebral body fractures.

Key Points

sMRI allows a reliable evaluation of vertebral body fractures.

sMRI has higher accuracy than standard-MRI for evaluation of vertebral body fractures.

sMRI is especially useful in patients with non-healed vertebral body fractures.

Keywords

MRI Susceptibility-weighted magnetic resonance imaging Vertebral body fractures Computed tomography Musculoskeletal 

Notes

Acknowledgements

The author MRM is grateful for the financial support from the Deutsche Forschungsgemeinschaft (DFG, 5943/31/41/91).

Compliance with ethical standards

Guarantor

The scientific guarantor of this publication is Dr. Sarah Maria Böker.

Conflict of interest

The author Prof. Bernd Hamm declares relationships with several biotechnical companies.

Funding

The authors state that this work has not received any funding.

Statistics and biometry

Daniel Schulze kindly provided statistical advice for this manuscript.

Informed consent

Written informed consent was obtained from all subjects (patients) in this study.

Ethical approval

Institutional Review Board approval was obtained.

Methodology

• prospective

• diagnostic or prognostic study

• performed at one institution

References

  1. 1.
    Waterloo S, Ahmed LA, Center JR et al (2012) Prevalence of vertebral fractures in women and men in the population-based Tromso Study. BMC Musculoskelet Disord 13:3CrossRefPubMedPubMedCentralGoogle Scholar
  2. 2.
    Parizel PM, van der Zijden T, Gaudino S et al (2010) Trauma of the spine and spinal cord: imaging strategies. Eur Spine J 19:S8–17CrossRefPubMedGoogle Scholar
  3. 3.
    Shah LM, Ross JS (2016) Imaging of Spine Trauma. Neurosurgery 79:626–642CrossRefPubMedGoogle Scholar
  4. 4.
    Kurz FT, Freitag M, Schlemmer HP, Bendszus M, Ziener CH (2016) Principles and applications of susceptibility weighted imaging. Radiologe 56:124–136CrossRefPubMedGoogle Scholar
  5. 5.
    Bai Y, Wang MY, Han YH et al (2013) Susceptibility weighted imaging: a new tool in the diagnosis of prostate cancer and detection of prostatic calcification. PLoS One 8:e53237CrossRefPubMedPubMedCentralGoogle Scholar
  6. 6.
    Straub S, Laun FB, Emmerich J et al (2016) Potential of quantitative susceptibility mapping for detection of prostatic calcifications. J Magn Reson Imaging.  https://doi.org/10.1002/jmri.25385
  7. 7.
    Cheng AL, Batool S, McCreary CR et al (2013) Susceptibility-weighted imaging is more reliable than T2*-weighted gradient-recalled echo MRI for detecting microbleeds. Stroke 44:2782–2786CrossRefPubMedGoogle Scholar
  8. 8.
    Haacke EM, Mittal S, Wu Z, Neelavalli J, Cheng YC (2009) Susceptibility-weighted imaging: technical aspects and clinical applications, part 1. AJNR Am J Neuroradiol 30:19–30CrossRefPubMedGoogle Scholar
  9. 9.
    Nih Consensus Development Panel on Osteoporosis Prevention D, Therapy (2001) Osteoporosis prevention, diagnosis, and therapy. JAMA 285:785–795CrossRefGoogle Scholar
  10. 10.
    Denis F (1983) The three column spine and its significance in the classification of acute thoracolumbar spinal injuries. Spine (Phila Pa 1976) 8:817–831CrossRefGoogle Scholar
  11. 11.
    Crim JR, Moore K, Brodke D (2001) Clearance of the cervical spine in multitrauma patients: the role of advanced imaging. Semin Ultrasound CT MR 22:283–305CrossRefPubMedGoogle Scholar
  12. 12.
    Platzer P, Jaindl M, Thalhammer G et al (2006) Clearing the cervical spine in critically injured patients: a comprehensive C-spine protocol to avoid unnecessary delays in diagnosis. Eur Spine J 15:1801–1810CrossRefPubMedGoogle Scholar
  13. 13.
    Mittal S, Wu Z, Neelavalli J, Haacke EM (2009) Susceptibility-weighted imaging: technical aspects and clinical applications, part 2. AJNR Am J Neuroradiol 30:232–252CrossRefPubMedPubMedCentralGoogle Scholar
  14. 14.
    Haacke EM, Xu Y, Cheng YC, Reichenbach JR (2004) Susceptibility weighted imaging (SWI). Magn Reson Med 52:612–618CrossRefPubMedGoogle Scholar
  15. 15.
    Di Ieva A, Lam T, Alcaide-Leon P, Bharatha A, Montanera W, Cusimano MD (2015) Magnetic resonance susceptibility weighted imaging in neurosurgery: current applications and future perspectives. J Neurosurg 123:1463–1475CrossRefPubMedGoogle Scholar
  16. 16.
    Chen W, Zhu W, Kovanlikaya I et al (2014) Intracranial calcifications and hemorrhages: characterization with quantitative susceptibility mapping. Radiology 270:496–505CrossRefPubMedPubMedCentralGoogle Scholar
  17. 17.
    Tong KA, Ashwal S, Holshouser BA et al (2003) Hemorrhagic shearing lesions in children and adolescents with posttraumatic diffuse axonal injury: improved detection and initial results. Radiology 227:332–339CrossRefPubMedGoogle Scholar
  18. 18.
    Tong KA, Ashwal S, Obenaus A, Nickerson JP, Kido D, Haacke EM (2008) Susceptibility-weighted MR imaging: a review of clinical applications in children. AJNR Am J Neuroradiol 29:9–17CrossRefPubMedGoogle Scholar
  19. 19.
    Nandigam RN, Viswanathan A, Delgado P et al (2009) MR imaging detection of cerebral microbleeds: effect of susceptibility-weighted imaging, section thickness, and field strength. AJNR Am J Neuroradiol 30:338–343CrossRefPubMedGoogle Scholar
  20. 20.
    Gao T, Wang Y, Zhang Z (2008) Silent cerebral microbleeds on susceptibility-weighted imaging of patients with ischemic stroke and leukoaraiosis. Neurol Res 30:272–276CrossRefPubMedGoogle Scholar
  21. 21.
    Santhosh K, Kesavadas C, Thomas B, Gupta AK, Thamburaj K, Kapilamoorthy TR (2009) Susceptibility weighted imaging: a new tool in magnetic resonance imaging of stroke. Clin Radiol 64:74–83CrossRefPubMedGoogle Scholar
  22. 22.
    Norenberg D, Ebersberger HU, Walter T et al (2016) Diagnosis of Calcific Tendonitis of the Rotator Cuff by Using Susceptibility-weighted MR Imaging. Radiology 278:475–484CrossRefPubMedGoogle Scholar
  23. 23.
    Xing W, He X, Kassir MA et al (2013) Evaluating hemorrhage in renal cell carcinoma using susceptibility weighted imaging. PLoS One 8:e57691CrossRefPubMedPubMedCentralGoogle Scholar
  24. 24.
    Chang SX, Li GW, Chen Y et al (2013) Characterizing venous vasculatures of hepatocellular carcinoma using a multi-breath-hold two-dimensional susceptibility weighted imaging. PLoS One 8:e65895CrossRefPubMedPubMedCentralGoogle Scholar

Copyright information

© European Society of Radiology 2017

Authors and Affiliations

  • Sarah M. Böker
    • 1
  • Lisa C. Adams
    • 1
  • Yvonne Y. Bender
    • 1
  • Moritz Wagner
    • 1
  • Torsten Diekhoff
    • 1
  • Eva Fallenberg
    • 2
  • Bernd Hamm
    • 1
  • Marcus R. Makowski
    • 1
  1. 1.Department of RadiologyCharitéBerlinGermany
  2. 2.Department of RadiologyCharitéBerlinGermany

Personalised recommendations