Skip to main content
Log in

Absence of DNA double-strand breaks in human peripheral blood mononuclear cells after 3 Tesla magnetic resonance imaging assessed by γH2AX flow cytometry

  • Magnetic Resonance
  • Published:
European Radiology Aims and scope Submit manuscript

Abstract

Objectives

Magnetic resonance imaging (MRI) is regarded as a non-harming and non-invasive imaging modality with high tissue contrast and almost no side effects. Compared to other cross-sectional imaging modalities, MRI does not use ionising radiation. Recently, however, strong magnetic fields as applied in clinical MRI scanners have been suspected to induce DNA double-strand breaks in human lymphocytes.

Methods

In this study we investigated the impact of 3-T cardiac MRI examinations on the induction of DNA double-strand breaks in peripheral mononuclear cells by γH2AX staining and flow cytometry analysis. The study cohort consisted of 73 healthy non-smoking volunteers with 36 volunteers undergoing CMRI and 37 controls without intervention. Differences between the two cohorts were analysed by a mixed linear model with repeated measures.

Results

Both cohorts showed a significant increase in the γH2AX signal from baseline to post-procedure of 6.7 % (SD 7.18 %) and 7.8 % (SD 6.61 %), respectively. However, the difference between the two groups was not significant.

Conclusion

Based on our study, γH2AX flow cytometry shows no evidence that 3-T MRI examinations as used in cardiac scans impair DNA integrity in peripheral mononuclear cells.

Key Points

• No evidence for DNA double-strand breaks after cardiac MRI.

• Prospective study underlines safe use of MRI with regard to DNA damage.

• Controlled trial involving both genders investigating DNA DSBs after 3-T MRI.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

Abbreviations

CMRI:

Cardiac MRI

DSB:

DNA double-strand break

MFI:

Median fluorescence intensity

PBMCs:

Peripheral blood mononuclear cells

SAR:

Specific energy absorption rate

References

  1. Formica D, Silvestri S (2004) Biological effects of exposure to magnetic resonance imaging: an overview. Biomed Eng Online 3:11

    Article  PubMed  PubMed Central  Google Scholar 

  2. Schenck JF (2000) Safety of strong, static magnetic fields. J Magn Reson Imaging 12:2–19

    Article  CAS  PubMed  Google Scholar 

  3. International Commission on Non-Ionizing Radiation Protection (1998) Guidelines for limiting exposure to time-varying electric, magnetic, and electromagnetic fields (up to 300 GHz). Health Phys 74:494–522. http://www.icnirp.org/cms/upload/publications/ICNIRPemfgdlger.pdf

  4. International Commission on Non-Ionizing Radiation Protection (2009) Guidelines on limits of exposure to static magnetic fields. Health Phys 96:504–514. https://www.ncbi.nlm.nih.gov/pubmed/19276710

  5. Schaefer DJ, Bourland JD, Nyenhuis JA (2000) Review of patient safety in time-varying gradient fields. J Magn Reson Imaging 12:20–29

    Article  CAS  PubMed  Google Scholar 

  6. Franco G, Perduri R, Murolo A (2008) Health effects of occupational exposure to static magnetic fields used in magnetic resonance imaging: a review. Med Lav 99:16–28

    CAS  PubMed  Google Scholar 

  7. Fatahi M, Demenescu LR, Speck O (2016) Subjective perception of safety in healthy individuals working with 7 T MRI scanners: a retrospective multicenter survey. MAGMA 29:379–387

    Article  PubMed  Google Scholar 

  8. Shellock FG (2000) Radiofrequency energy-induced heating during MR procedures: a review. J Magn Reson Imaging 12:30–36

    Article  CAS  PubMed  Google Scholar 

  9. Wyman C, Kanaar R (2006) DNA double-strand break repair: all's well that ends well. Annu Rev Genet 40:363–383

    Article  CAS  PubMed  Google Scholar 

  10. Rothkamm K (2004) Different means to an end: DNA double-strand break RepairLife sciences and radiation. Springer Verlag, Berlin, pp 179–186

    Google Scholar 

  11. Gaillard H, Garcia-Muse T, Aguilera A (2015) Replication stress and cancer. Nat Rev Cancer 15:276–289

    Article  CAS  PubMed  Google Scholar 

  12. Horn S, Barnard S, Rothkamm K (2011) Gamma-H2AX-based dose estimation for whole and partial body radiation exposure. PLoS One 6:e25113

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Rothkamm K, Balroop S, Shekhdar J, Fernie P, Goh V (2007) Leukocyte DNA damage after multi-detector row CT: a quantitative biomarker of low-level radiation exposure. Radiology 242:244–251

    Article  PubMed  Google Scholar 

  14. Rothkamm K, Lobrich M (2003) Evidence for a lack of DNA double-strand break repair in human cells exposed to very low x-ray doses. Proc Natl Acad Sci U S A 100:5057–5062

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Gulston M, de Lara C, Jenner T, Davis E, O'Neill P (2004) Processing of clustered DNA damage generates additional double-strand breaks in mammalian cells post-irradiation. Nucleic Acids Res 32:1602–1609

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Kuefner MA, Grudzenski S, Hamann J et al (2010) Effect of CT scan protocols on x-ray-induced DNA double-strand breaks in blood lymphocytes of patients undergoing coronary CT angiography. Eur Radiol 20:2917–2924

    Article  CAS  PubMed  Google Scholar 

  17. Brand M, Sommer M, Achenbach S et al (2012) X-ray induced DNA double-strand breaks in coronary CT angiography: comparison of sequential, low-pitch helical and high-pitch helical data acquisition. Eur J Radiol 81:e357–e362

    Article  PubMed  Google Scholar 

  18. Simi S, Ballardin M, Casella M et al (2008) Is the genotoxic effect of magnetic resonance negligible? Low persistence of micronucleus frequency in lymphocytes of individuals after cardiac scan. Mutat Res 645:39–43

    Article  CAS  PubMed  Google Scholar 

  19. Schwenzer NF, Bantleon R, Maurer B et al (2007) Detection of DNA double-strand breaks using gammaH2AX after MRI exposure at 3 Tesla: an in vitro study. J Magn Reson Imaging 26:1308–1314

    Article  PubMed  Google Scholar 

  20. Woodbine L, Haines J, Coster M et al (2015) The rate of X-ray-induced DNA double-strand break repair in the embryonic mouse brain is unaffected by exposure to 50 Hz magnetic fields. Int J Radiat Biol 91:495–499

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Yoon HE, Lee JS, Myung SH, Lee YS (2014) Increased gamma-H2AX by exposure to a 60-Hz magnetic fields combined with ionizing radiation, but not hydrogen peroxide, in non-tumorigenic human cell lines. Int J Radiat Biol 90:291–298

    Article  CAS  PubMed  Google Scholar 

  22. Szerencsi A, Kubinyi G, Valiczko E et al (2013) DNA integrity of human leukocytes after magnetic resonance imaging. Int J Radiat Biol 89:870–876

    Article  CAS  PubMed  Google Scholar 

  23. Fatahi M, Reddig A, Vijayalaxmi et al (2016) DNA double-strand breaks and micronuclei in human blood lymphocytes after repeated whole body exposures to 7T magnetic resonance imaging. NeuroImage 133:288–293

    Article  CAS  PubMed  Google Scholar 

  24. Reddig A, Fatahi M, Friebe B et al (2015) Analysis of DNA double-strand breaks and cytotoxicity after 7 Tesla magnetic resonance imaging of isolated human lymphocytes. PLoS One 10:e0132702

    Article  PubMed  PubMed Central  Google Scholar 

  25. Vijayalaxmi, Fatahi M, Speck O (2015) Magnetic resonance imaging (MRI): a review of genetic damage investigations. Mutat Res Rev Mutat Res 764:51–63

    Article  CAS  PubMed  Google Scholar 

  26. Hill MA, O'Neill P, McKenna WG (2016) Comments on potential health effects of MRI-induced DNA lesions: quality is more important to consider than quantity. Eur Heart J Cardiovasc Imaging 17:1230–1238

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Kimura T, Takahashi K, Suzuki Y et al (2008) The effect of high strength static magnetic fields and ionizing radiation on gene expression and DNA damage in Caenorhabditis elegans. Bioelectromagnetics 29:605–614

    Article  CAS  PubMed  Google Scholar 

  28. Fiechter M, Stehli J, Fuchs TA, Dougoud S, Gaemperli O, Kaufmann PA (2013) Impact of cardiac magnetic resonance imaging on human lymphocyte DNA integrity. Eur Heart J 34:2340–2345

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Fasshauer M, Krüwel T, Zapf A et al (2016) Absence of DNA double strand breaks in human peripheral blood mononuclear cells after magnetic resonance imaging assessed by γH2AX flow cytometry: a prospective blinded trial. J Cardiovasc Magn Reson 18:O129

    Article  PubMed Central  Google Scholar 

  30. Muslimovic A, Ismail IH, Gao Y, Hammarsten O (2008) An optimized method for measurement of gamma-H2AX in blood mononuclear and cultured cells. Nat Protoc 3:1187–1193

    Article  CAS  PubMed  Google Scholar 

  31. Olive PL (2004) Detection of DNA damage in individual cells by analysis of histone H2AX phosphorylation. Methods Cell Biol 75:355–373

    Article  CAS  PubMed  Google Scholar 

  32. Olive PL, Banath JP (2004) Phosphorylation of histone H2AX as a measure of radiosensitivity. Int J Radiat Oncol Biol Phys 58:331–335

    Article  CAS  PubMed  Google Scholar 

  33. Sedelnikova OA (2002) Quantitative detection of (125)IdU-induced DNA double-strand breaks with gamma-H2AX antibody. Radiat Res 158:486–492

    Article  CAS  PubMed  Google Scholar 

  34. Rogakou EP (1998) DNA double-stranded breaks induce histone H2AX phosphorylation on serine 139. J Biol Chem 273:5858–5868

    Article  CAS  PubMed  Google Scholar 

  35. Hamasaki K (2007) Short-term culture and gammaH2AX flow cytometry determine differences in individual radiosensitivity in human peripheral T lymphocytes. Environ Mol Mutagen 48:38–47

    Article  CAS  PubMed  Google Scholar 

  36. Huang X, Darzynkiewicz Z (2006) Cytometric assessment of histone H2AX phosphorylation: a reporter of DNA damage. Methods Mol Biol 314:73–80

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Ismail IH, Wadhra TI, Hammarsten O (2007) An optimized method for detecting gamma-H2AX in blood cells reveals a significant interindividual variation in the gamma-H2AX response among humans. Nucleic Acids Res 35:e36

    Article  PubMed  PubMed Central  Google Scholar 

  38. Lancellotti P, Nchimi A, Delierneux C et al (2015) Biological effects of cardiac magnetic resonance on human blood cells. Circ Cardiovasc Imaging 8:e003697

    Article  PubMed  Google Scholar 

  39. Brand M, Ellmann S, Sommer M et al (2015) Influence of cardiac MR imaging on DNA double-strand breaks in human blood lymphocytes. Radiology 277:406–412

    Article  PubMed  Google Scholar 

  40. Huang X, Okafuji M, Traganos F, Luther E, Holden E, Darzynkiewicz Z (2004) Assessment of histone H2AX phosphorylation induced by DNA topoisomerase I and II inhibitors topotecan and mitoxantrone and by the DNA cross-linking agent cisplatin. Cytometry A 58:99–110

    Article  PubMed  Google Scholar 

  41. Huang X, Traganos F, Darzynkiewicz Z (2003) DNA damage induced by DNA topoisomerase I- and topoisomerase II-inhibitors detected by histone H2AX phosphorylation in relation to the cell cycle phase and apoptosis. Cell Cycle 2:614–619

    CAS  PubMed  Google Scholar 

  42. Denoyer D, Lobachevsky P, Jackson P, Thompson M, Martin OA, Hicks RJ (2015) Analysis of 177Lu-DOTA-octreotate therapy-induced DNA damage in peripheral blood lymphocytes of patients with neuroendocrine tumors. J Nucl Med 56:505–511

    Article  CAS  PubMed  Google Scholar 

  43. Knuuti J, Saraste A, Kallio M, Minn H (2013) Is cardiac magnetic resonance imaging causing DNA damage? Eur Heart J 34:2337–2339

    Article  PubMed  Google Scholar 

  44. Teodori L, Giovanetti A, Albertini MC et al (2014) Static magnetic fields modulate X-ray-induced DNA damage in human glioblastoma primary cells. J Radiat Res 55:218–227

    Article  CAS  PubMed  Google Scholar 

  45. Andrievski A, Wilkins RC (2009) The response of gamma-H2AX in human lymphocytes and lymphocytes subsets measured in whole blood cultures. Int J Radiat Biol 85:369–376

    Article  CAS  PubMed  Google Scholar 

  46. Rogakou EP, Pilch DR, Orr AH, Ivanova VS, Bonner WM (1998) DNA double-stranded breaks induce histone H2AX phosphorylation on serine 139. J Biol Chem 273:5858–5868

    Article  CAS  PubMed  Google Scholar 

  47. Johansson P, Fasth A, Ek T, Hammarsten O (2016) Validation of a flow cytometry-based detection of gamma-H2AX, to measure DNA damage for clinical applications. Cytometry B Clin Cytom. https://doi.org/10.1002/cyto.b.21374

  48. Ondicova K, Mravec B (2010) Role of nervous system in cancer aetiopathogenesis. Lancet Oncol 11:596–601

    Article  PubMed  Google Scholar 

  49. Antoni MH, Lutgendorf SK, Cole SW et al (2006) The influence of bio-behavioural factors on tumour biology: pathways and mechanisms. Nat Rev Cancer 6:240–248

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Flint MS, Baum A, Chambers WH, Jenkins FJ (2007) Induction of DNA damage, alteration of DNA repair and transcriptional activation by stress hormones. Psychoneuroendocrinology 32:470–479

    Article  CAS  PubMed  Google Scholar 

  51. Hara MR, Kovacs JJ, Whalen EJ et al (2011) A stress response pathway regulates DNA damage through beta2-adrenoreceptors and beta-arrestin-1. Nature 477:349–353

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Onodera H, Jin Z, Chida S, Suzuki Y, Tago H, Itoyama Y (2003) Effects of 10-T static magnetic field on human peripheral blood immune cells. Radiat Res 159:775–779

    Article  CAS  PubMed  Google Scholar 

  53. Cho S, Lee Y, Lee S, Choi YJ, Chung HW (2014) Enhanced cytotoxic and genotoxic effects of gadolinium following ELF-EMF irradiation in human lymphocytes. Drug Chem Toxicol 37:440–447

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

Figure 1 contains images that are licensed by creative commons CC BY 3.0

CC: creativecommons.org/ns; CC terms: purl.org/dc/termes/; CC attribution: www.servier.com/Powerpoint-image-bank; license: creativecommons.org/licenses/by/3.0/

An extract of preliminary results of this study was the subject of an oral presentation during the 19th Annual SCMR Scientific Sessions 2016 (DOI: 10.1186/1532-429X-18-S1-O129); https://jcmr-online.biomedcentral.com/articles/10.1186/1532-429X-18-S1-O129

Funding

The authors state that this work has not received any funding.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Martin Fasshauer.

Ethics declarations

Guarantor

The scientific guarantor of this publication is Joachim Lotz.

Conflict of interest

The authors of this manuscript declare no relationships with any companies whose products or services may be related to the subject matter of the article.

Statistics and biometry

One of the authors has significant statistical expertise.

Ethical approval

Institutional Review Board approval was obtained.

Informed consent

Written informed consent was obtained from all subjects (volunteers) in this study.

Methodology

• prospective

• experimental

• performed at one institution

Electronic supplementary material

ESM 1

(DOCX 32 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Fasshauer, M., Krüwel, T., Zapf, A. et al. Absence of DNA double-strand breaks in human peripheral blood mononuclear cells after 3 Tesla magnetic resonance imaging assessed by γH2AX flow cytometry. Eur Radiol 28, 1149–1156 (2018). https://doi.org/10.1007/s00330-017-5056-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00330-017-5056-9

Keywords

Navigation