Advertisement

European Radiology

, Volume 28, Issue 2, pp 816–823 | Cite as

Myocardial iodine concentration measurement using dual-energy computed tomography for the diagnosis of cardiac amyloidosis: a pilot study

  • Virgile Chevance
  • Thibaud Damy
  • Vania Tacher
  • François Legou
  • Fourat Ridouani
  • Alain Luciani
  • Hicham Kobeiter
  • Alain Rahmouni
  • Jean-François Deux
Cardiac

Abstract

Objective

To measure myocardium iodine concentration (MIC) in patients with cardiac amyloidosis (CA) using dual-energy computed tomography (DECT).

Methods

Twenty-two patients with CA, 13 with non-amyloid hypertrophic cardiomyopathies (CH) and 10 control patients were explored with pre-contrast, arterial and 5-minute DECT acquisition (Iomeprol; 1.5 mL/kg). Inter-ventricular septum (IVS) thickness, blood pool iodine concentration (BPIC), MIC (mg/mL), iodine ratio and extra-cellular volume (ECV) were calculated.

Results

IVS thickness was significantly (p < 0.001) higher in CA (17 ± 4 mm) and CH (15 ± 3 mm) patients than in control patients (10 ± 1 mm). CA patients exhibited significantly (p < 0.001) higher 5-minute MIC [2.6 (2.3–3.1) mg/mL], 5-minute iodine ratio (0.88 ± 0.12) and ECV (0.56 ± 0.07) than CH [1.7 (1.4–2.2) mg/mL, 0.57 ± 0.07 and 0.36 ± 0.05, respectively] and control patients [1.9 (1.7–2.4) mg/mL, 0.58 ± 0.07 and 0.35 ± 0.04, respectively). CH and control patients exhibited similar values (p = 0.9). The area under the curve of 5-minute iodine ratio for the differential diagnosis of CA from CH patients was 0.99 (0.73–1.0; p = 0.001). With a threshold of 0.65, the sensitivity and specificity of 5-minute iodine ratio were 100% and 92%, respectively.

Conclusion

Five-minute MIC and iodine ratio were increased in CA patients and exhibited best diagnosis performance to diagnose CA in comparison to other parameters.

Key point

Dual-energy computed tomography can be used to detect cardiac amyloidosis

Five-minute myocardial iodine concentration and iodine ratio increase in cardiac amyloidosis

Among iodine parameters, 5-minute iodine ratio has the best diagnosis performance

Keywords

Amyloidosis/diagnosis Amyloidosis/complication Dual-energy computed tomography Cardiac imaging techniques Iodine map 

Abbreviations

BPIC

Blood pool iodine concentration

CA

Cardiac amyloidosis

CH

Cardiac hypertrophy

DECT

Dual-energy computed tomography

EMB

Endo-myocardial biopsy

ECV

Extra-cellular volume

GSI

Gemstone spectral imaging

HCM

Hypertrophic cardiomyopathy

IVS

Inter-ventricular septum

AL

Light-chain amyloidosis

MIC

Myocardium iodine concentration

ATTR

Transthyretin amyloidosis

Notes

Compliance with ethical standards

Guarantor

The scientific guarantor of this publication is Jean-François Deux.

Conflict of interest

The authors of this manuscript declare no relationships with any companies whose products or services may be related to the subject matter of the article.

Funding

The authors state that this work has not received any funding.

Statistics and biometry

One of the authors has significant statistical expertise.

Ethical approval

Institutional review board approval was obtained.

Informed consent

Written informed consent was obtained from all subjects (patients) in this study.

Methodology

• prospective

• experimental

• performed at one institution

References

  1. 1.
    Gertz MA, Benson MD, Dyck PJ et al (2015) Diagnosis, Prognosis, and Therapy of Transthyretin Amyloidosis. J Am Coll Cardiol 66:2451–2466CrossRefPubMedGoogle Scholar
  2. 2.
    Wechalekar AD, Gillmore JD, Hawkins PN (2016) Systemic amyloidosis. Lancet Lond Engl 387:2641–2654CrossRefGoogle Scholar
  3. 3.
    Quarta CC, Kruger JL, Falk RH (2012) Cardiac amyloidosis. Circulation 126:e178–e182CrossRefPubMedGoogle Scholar
  4. 4.
    White JA, Fine NM (2016) Recent Advances in Cardiovascular Imaging Relevant to the Management of Patients with Suspected Cardiac Amyloidosis. Curr Cardiol Rep 18:77CrossRefPubMedGoogle Scholar
  5. 5.
    Quintana-Quezada RA, Yusuf SW, Banchs J (2016) Use of Noninvasive Imaging in Cardiac Amyloidosis. Curr Treat Options Cardiovasc Med 18:46CrossRefPubMedGoogle Scholar
  6. 6.
    Deux J-F, Damy T, Rahmouni A et al (2014) Noninvasive detection of cardiac involvement in patients with hereditary transthyretin associated amyloidosis using cardiac magnetic resonance imaging: a prospective study. Amyloid Int J Exp Clin Investig Off J Int Soc Amyloidosis 21:246–255CrossRefGoogle Scholar
  7. 7.
    Gillmore JD, Maurer MS, Falk RH et al (2016) Nonbiopsy Diagnosis of Cardiac Transthyretin Amyloidosis. Circulation 133:2404–2412CrossRefPubMedGoogle Scholar
  8. 8.
    Falk RH, Quarta CC (2015) Echocardiography in cardiac amyloidosis. Heart Fail Rev 20:125–131CrossRefPubMedGoogle Scholar
  9. 9.
    Bandula S, White SK, Flett AS et al (2013) Measurement of myocardial extracellular volume fraction by using equilibrium contrast-enhanced CT: validation against histologic findings. Radiology 269:396–403CrossRefPubMedGoogle Scholar
  10. 10.
    Kammerlander AA, Marzluf BA, Zotter-Tufaro C et al (2016) T1 Mapping by CMR Imaging: From Histological Validation to Clinical Implication. JACC Cardiovasc Imaging 9:14–23CrossRefPubMedGoogle Scholar
  11. 11.
    Banypersad SM, Sado DM, Flett AS et al (2013) Quantification of myocardial extracellular volume fraction in systemic AL amyloidosis: an equilibrium contrast cardiovascular magnetic resonance study. Circ Cardiovasc Imaging 6:34–39CrossRefPubMedGoogle Scholar
  12. 12.
    Boynton SJ, Geske JB, Dispenzieri A et al (2016) LGE Provides Incremental Prognostic Information Over Serum Biomarkers in AL Cardiac Amyloidosis. JACC Cardiovasc Imaging 9:680–686CrossRefPubMedGoogle Scholar
  13. 13.
    Neilan TG, Coelho-Filho OR, Shah RV et al (2013) Myocardial extracellular volume fraction from T1 measurements in healthy volunteers and mice: relationship to aging and cardiac dimensions. JACC Cardiovasc Imaging 6:672–683CrossRefPubMedPubMedCentralGoogle Scholar
  14. 14.
    Karamitsos TD, Piechnik SK, Banypersad SM et al (2013) Noncontrast T1 mapping for the diagnosis of cardiac amyloidosis. JACC Cardiovasc Imaging 6:488–497CrossRefPubMedGoogle Scholar
  15. 15.
    den Harder AM, Willemink MJ, de Jong PA et al (2016) New horizons in cardiac CT. Clin Radiol 71:758–767CrossRefGoogle Scholar
  16. 16.
    Langer C, Both M, Harders H et al (2015) Late enhanced computed tomography in Hypertrophic Cardiomyopathy enables accurate left-ventricular volumetry. Eur Radiol 25:575–584CrossRefPubMedGoogle Scholar
  17. 17.
    Delgado Sánchez-Gracián C, Oca Pernas R, Trinidad López C et al (2016) Quantitative myocardial perfusion with stress dual-energy CT: iodine concentration differences between normal and ischemic or necrotic myocardium. Initial experience. Eur Radiol 26:3199–3207CrossRefPubMedGoogle Scholar
  18. 18.
    Patino M, Prochowski A, Agrawal MD et al (2016) Material Separation Using Dual-Energy CT: Current and Emerging Applications. Radiogr Rev Publ Radiol Soc N Am Inc 36:1087–1105Google Scholar
  19. 19.
    Lee H-J, Im DJ, Youn J-C et al (2016) Myocardial Extracellular Volume Fraction with Dual-Energy Equilibrium Contrast-enhanced Cardiac CT in Nonischemic Cardiomyopathy: A Prospective Comparison with Cardiac MR Imaging. Radiology 280:49–57CrossRefPubMedGoogle Scholar
  20. 20.
    Schwarz F, Ruzsics B, Schoepf UJ et al (2008) Dual-energy CT of the heart--principles and protocols. Eur J Radiol 68:423–433CrossRefPubMedGoogle Scholar
  21. 21.
    Treibel TA, Bandula S, Fontana M et al (2015) Extracellular volume quantification by dynamic equilibrium cardiac computed tomography in cardiac amyloidosis. J Cardiovasc Comput Tomogr 9:585–592CrossRefPubMedPubMedCentralGoogle Scholar
  22. 22.
    Deux J-F, Mihalache C-I, Legou F et al (2015) Noninvasive detection of cardiac amyloidosis using delayed enhanced MDCT: a pilot study. Eur Radiol 25:2291–2297CrossRefPubMedGoogle Scholar
  23. 23.
    Nacif MS, Kawel N, Lee JJ et al (2012) Interstitial myocardial fibrosis assessed as extracellular volume fraction with low-radiation-dose cardiac CT. Radiology 264:876–883CrossRefPubMedPubMedCentralGoogle Scholar
  24. 24.
    Kristen AV, Brokbals E, Aus dem Siepen F et al (2016) Cardiac Amyloid Load: A Prognostic and Predictive Biomarker in Patients With Light-Chain Amyloidosis. J Am Coll Cardiol 68:13–24CrossRefPubMedGoogle Scholar
  25. 25.
    Nacif MS, Liu Y, Yao J et al (2013) 3D left ventricular extracellular volume fraction by low-radiation dose cardiac CT: assessment of interstitial myocardial fibrosis. J Cardiovasc Comput Tomogr 7:51–57CrossRefPubMedGoogle Scholar
  26. 26.
    Wong TC, Piehler K, Meier CG et al (2012) Association between extracellular matrix expansion quantified by cardiovascular magnetic resonance and short-term mortality. Circulation 126:1206–1216CrossRefPubMedPubMedCentralGoogle Scholar
  27. 27.
    Fontana M (2016) Prognosis in Cardiac Amyloidosis by LGE: Ready for Prime Time? JACC Cardiovasc Imaging 9:687–689CrossRefPubMedGoogle Scholar
  28. 28.
    Gallego-Delgado M, González-López E, Muñoz-Beamud F et al (2016) Extracellular volume detects amyloidotic cardiomyopathy and correlates with neurological impairment in transthyretin-familial amyloidosis. Rev Esp Cardiol (Engl Ed). doi: 10.1016/j.rec.2016.02.027
  29. 29.
    Fontana M, Banypersad SM, Treibel TA et al (2015) Differential Myocyte Responses in Patients with Cardiac Transthyretin Amyloidosis and Light-Chain Amyloidosis: A Cardiac MR Imaging Study. Radiology 277:388–397CrossRefPubMedGoogle Scholar
  30. 30.
    Fontana M, Pica S, Reant P et al (2016) Response to Letters Regarding Article, “Prognostic Value of Late Gadolinium Enhancement Cardiovascular Magnetic Resonance in Cardiac Amyloidosis.”. Circulation 133:e450–e451CrossRefPubMedPubMedCentralGoogle Scholar

Copyright information

© European Society of Radiology 2017

Authors and Affiliations

  • Virgile Chevance
    • 1
  • Thibaud Damy
    • 2
    • 3
    • 4
  • Vania Tacher
    • 1
    • 3
  • François Legou
    • 1
  • Fourat Ridouani
    • 1
  • Alain Luciani
    • 1
    • 5
  • Hicham Kobeiter
    • 1
    • 3
  • Alain Rahmouni
    • 1
    • 5
  • Jean-François Deux
    • 1
    • 3
    • 4
  1. 1.Service d’Imagerie MédicaleAP-HP (Assistance Publique–Hôpitaux de Paris, Créteil), Groupe Hospitalier Henri Mondor-Albert ChenevierCréteilFrance
  2. 2.Service de CardiologieAP-HP (Assistance Publique–Hôpitaux de Paris, Créteil), Groupe Hospitalier Henri Mondor-Albert ChenevierCréteilFrance
  3. 3.DHU (Département Hospitalo-Universitaire) ATVB (Ageing-Thorax-Vessels-Blood), IMRB (Institut Mondor de Recherche Biomédicale)Université Paris-Est-Créteil, (UPEC)CréteilFrance
  4. 4.GRC Amyloid Research Institute and Reseau Amylose Mondor, Groupe Hospitalier Henri Mondor-Albert ChenevierUniversité Paris-Est-Créteil (UPEC)CréteilFrance
  5. 5.DHU (Département Hospitalo-Universitaire) VIC (Virus-Immunity-Cancer), IMRB (Institut Mondor de Recherche Biomédicale)Université Paris-Est-Créteil, (UPEC)CréteilFrance

Personalised recommendations