European Radiology

, Volume 28, Issue 1, pp 363–371 | Cite as

High resolution post-mortem MRI of non-fixed in situ foetal brain in the second trimester of gestation: Normal foetal brain development

  • Elisa ScolaEmail author
  • Giorgio Conte
  • Giovanni Palumbo
  • Sabrina Avignone
  • Claudia Maria Cinnante
  • Simona Boito
  • Nicola Persico
  • Tommaso Rizzuti
  • Fabio Triulzi



To describe normal foetal brain development with high resolution post-mortem MRI (PMMRI) of non-fixed foetal brains.


We retrospectively collected PMMRIs of foetuses without intracranial abnormalities and chromosomal aberrations studied after a termination of pregnancy due to extracranial abnormalities or after a spontaneous intrauterine death. PMMRIs were performed on a 3-T scanner without any fixation and without removing the brain from the skull. All PMMRIs were evaluated in consensus by two neuroradiologists.


Our analysis included ten PMMRIs (median gestational age (GA): 21 weeks; range: 17–28 weeks). At 19 and 20 weeks of GA, the corticospinal tracts are recognisable in the medulla oblongata, becoming less visible from 21 weeks. Prior to 20 weeks the posterior limb of the internal capsule (PLIC) is more hypointense than surrounding deep grey nuclei; starting from 21 weeks the PLIC becomes isointense, and is hyperintense at 28 weeks. From 19–22 weeks, the cerebral hemispheres show transient layers: marginal zone, cortical plate, subplate, and intermediate, subventricular and germinal zones.


PMMRI of non-fixed in situ foetal brains preserves the natural tissue contrast and skull integrity. We assessed foetal brain development in a small cohort of foetuses, focusing on 19–22 weeks of gestation.

Key Points

Post-mortem magnetic resonance imaging (PMMRI) of non-fixed head is feasible.

PMMRI of unfixed in situ foetal brains preserves the natural tissue contrast.

PMMRI provide a good depiction of the normal foetal brain development.

PMMRI of unfixed in situ foetal brains preserves the skull integrity.

PMMRI pattern of foetal brain development at early gestational age is described.


Magnetic resonance imaging Brain Post-mortem Autopsy Foetus 



Cortical plate


Gestational age


Germinal zone


Intermediate zone and subventricular zone


Magnetic resonance imaging


Marginal zone


Post-mortem magnetic resonance imaging




Termination of pregnancy


Compliance with ethical standards


The scientific guarantor of this publication is Prof. Fabio Triulzi.

Conflict of interest

The authors of this manuscript declare no relationships with any companies whose products or services may be related to the subject matter of the article.


The authors state that this work has not received any funding.

Statistics and biometry

No complex statistical methods were necessary for this paper.

Informed consent

Written informed consent was waived by the Institutional Review Board.

Ethical approval

Institutional Review Board approval was obtained


• retrospective

• observational study

• performed at one institution


  1. 1.
    Glenn OA, Barkovich AJ (2006) Magnetic resonance imaging of the fetal brain and spine: an increasingly important tool in prenatal diagnosis, part 1. Am J Neuroradiol 27:1604–1611PubMedGoogle Scholar
  2. 2.
    Whitby E, Paley MN, Davies N, Sprigg A, Griffiths PD (2001) Ultrafast magnetic resonance imaging of central nervous system abnormalities in utero in the second and third trimester of pregnancy: comparison with ultrasound. BJOG 108:519–526PubMedGoogle Scholar
  3. 3.
    Levine D, Barnes PD, Sher S et al (1998) Fetal fast MR imaging: reproducibility, technical quality, and conspicuity of anatomy. Radiology 206:549–554CrossRefPubMedGoogle Scholar
  4. 4.
    Prayer D, Kasprian G, Krampl E et al (2006) MRI of normal fetal brain development. Eur J Radiol 57:199–216CrossRefPubMedGoogle Scholar
  5. 5.
    Chung R, Kasprian G, Brugger PC, Prayer D (2009) The current state and future of fetal imaging. Clin Perinatol 36:685–699CrossRefPubMedGoogle Scholar
  6. 6.
    Triulzi F, Manganaro L, Volpe P (2011) Fetal magnetic resonance imaging: indications, study protocols and safety. Radiol Med 116:337–350CrossRefPubMedGoogle Scholar
  7. 7.
    Conte G, Parazzini C, Falanga G et al (2016) Diagnostic value of prenatal MR imaging in the detection of brain malformations in fetuses before the 26th week of gestational age. AJNR Am J Neuroradiol 37:946–951CrossRefPubMedGoogle Scholar
  8. 8.
    Hagelstein C, Zahn K, Weidner M et al (2015) Prenatal MR imaging of congenital diaphragmatic hernias: association of MR fetal lung volume with the need for postnatal prosthetic patch repair. Eur Radiol 25:258–266CrossRefPubMedGoogle Scholar
  9. 9.
    Zhang Z, Liu S, Lin X et al (2011) Development of laminar organization of the fetal cerebrum at 3.0T and 7.0T: a postmortem MRI study. Neuroradiology 53:177–184CrossRefPubMedGoogle Scholar
  10. 10.
    Lin X, Zhang Z, Teng G et al (2011) Measurements using 7.0T post-mortem magnetic resonance imaging of the scalar dimensions of the fetal brain between 12 and 20 weeks gestational age. Int J Dev Neurosci 29:885–889CrossRefPubMedGoogle Scholar
  11. 11.
    Zhang Z, Liu S, Lin X et al (2011) Development of fetal brain of 20 weeks gestational age: Assessment with post-mortem Magnetic Resonance Imaging. Eur J Radiol 80:e432–e439CrossRefPubMedGoogle Scholar
  12. 12.
    Griffiths PD, Variend D, Evans M et al (2003) Postmortem MR imaging of the fetal and stillborn central nervous system. Am J Neuroradiol 24:22–27PubMedGoogle Scholar
  13. 13.
    Bendersky M, Musolino PL, Rugilo C, Schuster G, Sica RE (2006) Normal anatomy of the developing fetal brain. Ex vivo anatomical-magnetic resonance imaging correlation. J Neurol Sci 250:20–26CrossRefPubMedGoogle Scholar
  14. 14.
    Garel C, Brisse H, Sebag G, Elmaleh M, Oury JF, Hassan M (1998) Magnetic resonance imaging of the fetus. Pediatr Radiol 28:201–211CrossRefPubMedGoogle Scholar
  15. 15.
    Garel C, Chantrel E, Elmaleh M, Brisse H, Sebag G (2003) Fetal MRI: Normal gestational landmarks for cerebral biometry, gyration and myelination. Childs Nerv Syst 19:422–425CrossRefPubMedGoogle Scholar
  16. 16.
    Triulzi F, Parazzini C, Righini A (2006) Magnetic resonance imaging of fetal cerebellar development. Cerebellum 5:199–205CrossRefPubMedGoogle Scholar
  17. 17.
    Whitby EH, Variend S, Rutter S et al (2004) Corroboration of in utero MRI using post-mortem MRI and autopsy in foetuses with CNS abnormalities. Clin Radiol 59:1114–1120CrossRefPubMedGoogle Scholar
  18. 18.
    Verhoye M, Votino C, Cannie MM et al (2013) Post-mortem high-field magnetic resonance imaging: effect or various factors. J Matern Fetal Neonatal Med 26:1060–1065CrossRefPubMedGoogle Scholar
  19. 19.
    Arthurs OJ, Thayyil S, Pauliah SS et al (2015) Diagnostic accuracy and limitations of post-mortem MRI for neurological abnormalities in fetuses and children. Clin Radiol 70:872–880CrossRefPubMedGoogle Scholar
  20. 20.
    Thayyil S, De Vita E, Sebire NJ et al (2012) Post-mortem cerebral magnetic resonance imaging T1 and T2 in fetuses, newborns and infants. Eur J Radiol 81:e232–e238CrossRefPubMedGoogle Scholar
  21. 21.
    Bayer SA, Altman J (2005) The human brain during the second and third trimester. CRC Press ISBN 9780849314223 - CAT# 1422Google Scholar
  22. 22.
    Counsell SJ, Maalouf EF, Fletcher AM et al (2002) MR imaging assessment of myelination in the very preterm brain. AJNR Am J Neuroradiol 23:872–881PubMedGoogle Scholar
  23. 23.
    Adamsbaum C, Moutard ML, André C et al (2005) MRI of the fetal posterior fossa. Pediatr Radiol 35:124–140CrossRefPubMedGoogle Scholar
  24. 24.
    Liu F, Zhang Z, Lin X et al (2011) Development of the human fetal cerebellum in the second trimester: A post mortem magnetic resonance imaging evaluation. J Anat 219:582–588CrossRefPubMedPubMedCentralGoogle Scholar
  25. 25.
    Girard N, Raybaud C, Gambarelli D, Figarella-Branger D (2001) Fetal brain MRI. MRI Clin N Am 9:19–56Google Scholar
  26. 26.
    Barr M, Blackburn WR, Cooley NR (1994) Human fetal somatic and visceral morphometrics. Teratology 49:487–496CrossRefPubMedGoogle Scholar
  27. 27.
    Girard N, Raybaud C, DuLac P (1991) MRI study of brain myelination. J Neuroradiol 18:291–307PubMedGoogle Scholar
  28. 28.
    Kostovic I, Vasung L (2009) Insights from in vitro fetal magnetic resonance imaging of cerebral development. Semin Perinatol 33:220–233CrossRefPubMedGoogle Scholar
  29. 29.
    Wang X, Pettersson DR, Studholme C, Kroenke CD (2015) Characterization of laminar zones in the mid-gestation primate brain with magnetic resonance imaging and histological methods. Front Neuroanat 9:1–13Google Scholar
  30. 30.
    Kostović I, Judas M, Rados M, Hrabac P (2002) Laminar organization of the human fetal cerebrum revealed by histochemical markers and magnetic resonance imaging. Cereb Cortex 12:536–544CrossRefPubMedGoogle Scholar
  31. 31.
    Huang H, Zhang J, Wakana S et al (2006) White and gray matter development in human fetal, newborn and pediatric brains. Neuroimage 33:27–38CrossRefPubMedGoogle Scholar
  32. 32.
    Kostovic I, Jovanov-Milosevic N (2006) The development of cerebral connections during the first 20-45 weeks’ gestation. Semin Fetal Neonatal Med 11:415–422CrossRefPubMedGoogle Scholar
  33. 33.
    Lequin MH, Huisman TA (2012) Postmortem MR Imaging in the Fetal and Neonatal Period. Magn Reson Imaging Clin N Am 20:129–143CrossRefPubMedGoogle Scholar
  34. 34.
    Pfefferbaum A, Sullivan EV, Adalsteinsson E, Garrick T, Harper C (2004) Postmortem MR imaging of formalin-fixed human brain. Neuroimage 21:1585–1595CrossRefPubMedGoogle Scholar
  35. 35.
    Petrén-Mallmin M (1994) Clinical and experimental imaging of breast cancer metastases in the spine. Acta Radiol Suppl 391:1–23PubMedGoogle Scholar
  36. 36.
    Kang X, Cannie MM, Arthurs OJ et al (2017) Post-mortem whole-body magnetic resonance imaging of human fetuses: a comparison of 3-T vs. 1.5-T MR imaging with classical autopsy. Eur Radiol. doi: 10.1007/s00330-016-4725-4 Google Scholar
  37. 37.
    Sirgiovanni I, Avignone S, Groppo M et al (2014) Intracranial haemorrhage: an incidental finding at magnetic resonance imaging in a cohort of late preterm and term infants. Pediatr Radiol 44:289–296CrossRefPubMedGoogle Scholar

Copyright information

© European Society of Radiology 2017

Authors and Affiliations

  1. 1.Neuroradiology UnitFondazione IRCCS Ca Granda Ospedale Maggiore PoliclinicoMilanItaly
  2. 2.Postgraduation School in RadiodiagnosticsUniversità degli Studi di MilanoMilanItaly
  3. 3.Department of Obstetrics and Gynaecology ‘L. Mangiagalli’Fondazione IRCCS Ca Granda Ospedale Maggiore PoliclinicoMilanItaly
  4. 4.Pathology UnitFondazione IRCCS Ca Granda Ospedale Maggiore PoliclinicoMilanItaly
  5. 5.Department of Pathophysiology and TransplantationUniversità degli Studi di MilanoMilanItaly

Personalised recommendations