European Radiology

, Volume 27, Issue 12, pp 5136–5145 | Cite as

Prediction of the estimated 5-year risk of sudden cardiac death and syncope or non-sustained ventricular tachycardia in patients with hypertrophic cardiomyopathy using late gadolinium enhancement and extracellular volume CMR

  • Maxim Avanesov
  • Julia Münch
  • Julius Weinrich
  • Lennart Well
  • Dennis Säring
  • Christian Stehning
  • Enver Tahir
  • Sebastian Bohnen
  • Ulf K. Radunski
  • Kai Muellerleile
  • Gerhard Adam
  • Monica Patten
  • Gunnar LundEmail author



To evaluate the ability of late gadolinium enhancement (LGE) and mapping cardiac magnetic resonance (CMR) including native T1 and global extracellular volume (ECV) to identify hypertrophic cardiomyopathy (HCM) patients at risk for sudden cardiac death (SCD) and to predict syncope or non-sustained ventricular tachycardia (VT).


A 1.5-T CMR was performed in 73 HCM patients and 16 controls. LGE size was quantified using the 3SD, 5SD and full width at half maximum (FWHM) method. T1 and ECV maps were generated by a 3(3)5 modified Look-Locker inversion recovery sequence. Receiver-operating curve analysis evaluated the best parameter to identify patients with increased SCD risk ≥4% and patients with syncope or non-sustained VT.


Global ECV was the best predictor of SCD risk with an area under the curve (AUC) of 0.83. LGE size was significantly inferior to global ECV with an AUC of 0.68, 0.70 and 0.70 (all P < 0.05) for 3SD-, 5SD- and FWHM-LGE, respectively. Combined use of the SCD risk score and global ECV significantly improved the diagnostic accuracy to identify HCM patients with syncope or non-sustained VT.


Combined use of the SCD risk score and global ECV has the potential to improve HCM patient selection, benefiting most implantable cardioverter defibrillators.

Key Points

Global ECV identified the best HCM patients with increased SCD risk.

Global ECV performed equally well compared to a SCD risk score.

Combined use of the SCD risk score and global ECV improved test accuracy.

Combined use potentially improves selection of HCM patients for ICD implantation.


Hypertrophic cardiomyopathy Prognosis Late gadolinium enhancement Extracellular volume Risk assessment 



Cardiac magnetic resonance


Extracellular volume


Estimated glomerular filtration rate


Full width half maximum


Hypertrophic cardiomyopathy


Implantable cardioverter defibrillator


Late gadolinium enhancement


Left ventricular


Left ventricular ejection fraction


Left ventricular outflow tract


N-terminal pro b-type natriuretic peptide


New York Heart Association


Modified Look-Locker inversion recovery


Sudden cardiac death


Standard deviation


Troponin T


Compliance with ethical standards


The scientific guarantor of this publication is Gunnar K. Lund.

Conflict of interest

The authors of this manuscript declare relationships with the following companies: Philips Research, Hamburg, Germany.

Dr. Stehning is an employee of Philips Research, Hamburg, Germany.


The authors state that this work has not received any funding.

Statistics and biometry

One of the authors has significant statistical expertise.

Ethical approval

Institutional Review Board approval was obtained.

Informed consent

Written informed consent was obtained from all subjects (patients) in this study.


• prospective

• diagnostic or prognostic study

• performed at one institution

Supplementary material

330_2017_4869_MOESM1_ESM.docx (38 kb)
ESM 1 (DOCX 38 kb)


  1. 1.
    Maron BJ (2009) Distinguishing hypertrophic cardiomyopathy from athlete’s heart physiological remodelling: clinical significance, diagnostic strategies and implications for preparticipation screening. Br J Sports Med 43:649–656CrossRefPubMedGoogle Scholar
  2. 2.
    Gersh BJ, Maron BJ, Bonow RO et al (2011) 2011 ACCF/AHA Guideline for the diagnosis and treatment of hypertrophic cardiomyopathy: executive summary. J Am Coll Cardiol 58:2703–2738CrossRefPubMedGoogle Scholar
  3. 3.
    O’Mahony C, Jichi F, Pavlou M et al (2014) A novel clinical risk prediction model for sudden cardiac death in hypertrophic cardiomyopathy (HCM Risk-SCD). Eur Heart J 35:2010–2020CrossRefPubMedGoogle Scholar
  4. 4.
    Elliott PM, Anastasakis A, Borger MA et al (2014) 2014 ESC Guidelines on diagnosis and management of hypertrophic cardiomyopathy: the Task Force for the Diagnosis and Management of Hypertrophic Cardiomyopathy of the European Society of Cardiology (ESC). Eur Heart J 35:2733–2779CrossRefPubMedGoogle Scholar
  5. 5.
    Ruiz-Salas A, García-Pinilla J, Cabrera-Bueno F, et al. Comparison of the new risk prediction model (HCM Risk-SCD) and classic risk factors for sudden death in patients with hypertrophic cardiomyopathy and defibrillator. Europace. 2015:3–7. doi: 10.1093/europace/euv079
  6. 6.
    Kuruvilla S, Adenaw N, Katwal AB et al (2014) Late gadolinium enhancement on cardiac magnetic resonance predicts adverse cardiovascular outcomes in nonischemic cardiomyopathy: a systematic review and meta-analysis. Circ Cardiovasc Imaging 7:250–258CrossRefPubMedGoogle Scholar
  7. 7.
    Bruder O, Wagner A, Jensen CJ et al (2010) Myocardial scar visualized by cardiovascular magnetic resonance imaging predicts major adverse events in patients with hypertrophic cardiomyopathy. J Am Coll Cardiol 56:875–887CrossRefPubMedGoogle Scholar
  8. 8.
    O’Hanlon R, Grasso A, Roughton M et al (2010) Prognostic significance of myocardial fibrosis in hypertrophic cardiomyopathy. J Am Coll Cardiol 56:867–874CrossRefPubMedGoogle Scholar
  9. 9.
    Maron MS, Appelbaum E, Harrigan CJ et al (2008) Clinical profile and significance of delayed enhancement in hypertrophic cardiomyopathy. Circ Heart Fail 1:184–191CrossRefPubMedGoogle Scholar
  10. 10.
    Mewton N, Liu CY, Croisille P et al (2011) Assessment of myocardial fibrosis with cardiovascular magnetic resonance. J Am Coll Cardiol 57:891–903CrossRefPubMedGoogle Scholar
  11. 11.
    Ellims AH, Iles LM, Ling L et al (2012) Diffuse myocardial fibrosis in hypertrophic cardiomyopathy can be identified by cardiovascular magnetic resonance, and is associated with left ventricular diastolic dysfunction. J Cardiovasc Magn Reson 14:76CrossRefPubMedPubMedCentralGoogle Scholar
  12. 12.
    Maron MS (2012) Clinical utility of cardiovascular magnetic resonance in hypertrophic cardiomyopathy. J Cardiovasc Magn Reson 14:13CrossRefPubMedPubMedCentralGoogle Scholar
  13. 13.
    Flett AS, Hayward MP, Ashworth MT et al (2010) Equilibrium contrast cardiovascular magnetic resonance for the measurement of diffuse myocardial fibrosis: preliminary validation in humans. Circulation 122:138–144CrossRefPubMedGoogle Scholar
  14. 14.
    Kammerlander AA, Marzluf BA, Zotter-Tufaro C et al (2016) T1 Mapping by CMR imaging from histological validation to clinical implication. J Am Coll Cardiol Img 9:14–23CrossRefGoogle Scholar
  15. 15.
    Diao K, Yang Z, Xu H et al (2017) Histologic validation of myocardial fibrosis measured by T1 mapping: a systematic review and meta-analysis. J Cardiovasc Magn Reson 18:92CrossRefGoogle Scholar
  16. 16.
    Miller CA, Naish JH, Bishop P, et al. (201 3) Comprehensive validation of cardiovascular magnetic resonance techniques for the assessment of myocardial extracellular volume. Circ Cardiovasc Imaging 6:373–383. doi: 10.1161/CIRCIMAGING.112.000192
  17. 17.
    Maron BJ, Maron MS (2013) Hypertrophic cardiomyopathy. Lancet 381:242–255CrossRefPubMedGoogle Scholar
  18. 18.
    Maron MS, Olivotto I, Betocchi S et al (2003) Effect of left ventricular outflow tract obstruction on clinical outcome in hypertrophic cardiomyopathy. N Engl J Med 348:295–303CrossRefPubMedGoogle Scholar
  19. 19.
    Schulz-Menger J, Bluemke DA, Bremerich J et al (2013) Standardized image interpretation and post processing in cardiovascular magnetic resonance: Society for Cardiovascular Magnetic Resonance (SCMR) Board of Trustees Task Force on Standardized Post Processing. J Cardiovasc Magn Reson 15:35CrossRefPubMedPubMedCentralGoogle Scholar
  20. 20.
    HCM Risk-SCD Calculator: Available via . Accessed 15 Aug 2016
  21. 21.
    Ugander M, Oki AJ, Hsu LY et al (2012) Extracellular volume imaging by magnetic resonance imaging provides insights into overt and sub-clinical myocardial pathology. Eur Heart J 33:1268–1278CrossRefPubMedPubMedCentralGoogle Scholar
  22. 22.
    Säring D, Ehrhardt J, Stork A et al (2006) Computer-assisted analysis of 4D cardiac MR image sequences after myocardial infarction. Methods Inf Med 45:377–383PubMedGoogle Scholar
  23. 23.
    Mikami Y, Kolman L, Joncas SX et al (2014) Accuracy and reproducibility of semi-automated late gadolinium enhancement quantification techniques in patients with hypertrophic cardiomyopathy. J Cardiovasc Magn Reson 16:85CrossRefPubMedPubMedCentralGoogle Scholar
  24. 24.
    Moravsky G, Ofek E, Rakowski H et al (2013) Myocardial fibrosis in hypertrophic cardiomyopathy: accurate reflection of histopathological findings by CMR. J Am Coll Cardiol Img 6:587–596CrossRefGoogle Scholar
  25. 25.
    Flett AS, Hasleton J, Cook C et al (2011) Evaluation of techniques for the quantification of myocardial scar of differing etiology using cardiac magnetic resonance. J Am Coll Cardiol Img 4:150–156CrossRefGoogle Scholar
  26. 26.
    Hamshere S, Jones DA, Pellaton C et al (2016) Cardiovascular magnetic resonance imaging of myocardial oedema following acute myocardial infarction: is whole heart coverage necessary? J Cardiovasc Magn Reson 18:7CrossRefPubMedPubMedCentralGoogle Scholar
  27. 27.
    Karlsen OT, Verhagen R, Bovée WMMJ (1999) Parameter estimation from Rician-distributed data sets using a maximum likelihood estimator: application to T1 and perfusion measurements. Magn Reson Med 41:614–623CrossRefPubMedGoogle Scholar
  28. 28.
    Green JJ, Berger JS, Kramer CM, Salerno M (2012) Prognostic value of late gadolinium enhancement in clinical outcomes for hypertrophic cardiomyopathy. J Am Coll Cardiol Img 5:370–377CrossRefGoogle Scholar
  29. 29.
    Chan RH, Maron BJ, Olivotto I et al (2014) Prognostic value of quantitative contrast-enhanced cardiovascular magnetic resonance for the evaluation of sudden death risk in patients with hypertrophic cardiomyopathy. Circulation 130:484–495.Google Scholar
  30. 30.
    Puntmann VO, Voigt T, Chen Z et al (2013) Native T1 mapping in differentiation of normal myocardium from diffuse disease in hypertrophic and dilated cardiomyopathy. J Am Coll Cardiol Img 6:475–484CrossRefGoogle Scholar
  31. 31.
    Dass S, Suttie JJ, Piechnik SK et al (2012) Myocardial tissue characterization using magnetic resonance noncontrast T1 mapping in hypertrophic and dilated cardiomyopathy. Circ Cardiovasc Imaging 5:726–733CrossRefPubMedGoogle Scholar
  32. 32.
    Kali A, Cokic I, Tang RLQ et al (2014) Determination of location, size, and transmurality of chronic myocardial infarction without exogenous contrast media by using cardiac magnetic resonance imaging at 3 T. Circ Cardiovasc Imaging 7:471–481CrossRefPubMedPubMedCentralGoogle Scholar
  33. 33.
    Wong TC, Piehler K, Meier CG et al (2012) Association between extracellular matrix expansion quantified by cardiovascular magnetic resonance and short-term mortality. Circulation 126:1206–1216CrossRefPubMedPubMedCentralGoogle Scholar
  34. 34.
    Schelbert EB, Piehler KM, Zareba KM et al (2015) Myocardial fibrosis quantified by extracellular volume is associated with subsequent hospitalization for heart failure, death, or both across the spectrum of ejection fraction and heart failure stage. J Am Heart Assoc 4, e002613. doi: 10.1161/JAHA.115.002613 CrossRefPubMedPubMedCentralGoogle Scholar
  35. 35.
    Basso C, Thiene G, Corrado D et al (2000) Hypertrophic cardiomyopathy and sudden death in the young: pathologic evidence of myocardial ischemia. Hum Pathol 31:988–998CrossRefPubMedGoogle Scholar
  36. 36.
    Shirani J, Pick R, Roberts WC, Maron BJ (2000) Morphology and significance of the left ventricular collagen network in young patients with hypertrophic cardiomyopathy and sudden cardiac death. J Am Coll Cardiol 35:36–44CrossRefPubMedGoogle Scholar

Copyright information

© European Society of Radiology 2017

Authors and Affiliations

  • Maxim Avanesov
    • 1
  • Julia Münch
    • 2
    • 3
  • Julius Weinrich
    • 1
  • Lennart Well
    • 1
  • Dennis Säring
    • 4
  • Christian Stehning
    • 5
  • Enver Tahir
    • 1
  • Sebastian Bohnen
    • 2
  • Ulf K. Radunski
    • 2
  • Kai Muellerleile
    • 2
  • Gerhard Adam
    • 1
  • Monica Patten
    • 2
    • 3
  • Gunnar Lund
    • 1
    Email author
  1. 1.Department of Diagnostic and Interventional RadiologyUniversity Hospital Hamburg EppendorfHamburgGermany
  2. 2.Department of General and Interventional CardiologyUniversity Heart Center HamburgHamburgGermany
  3. 3.DZHK (German Center for Cardiovascular Research), Partner Site Hamburg/Kiel/Lübeck, GermanyHamburgGermany
  4. 4.Information Technology and Image ProcessingUniversity of Applied SciencesWedelGermany
  5. 5.Philips ResearchHamburgGermany

Personalised recommendations