European Radiology

, Volume 27, Issue 11, pp 4498–4509 | Cite as

The impact of image reconstruction settings on 18F-FDG PET radiomic features: multi-scanner phantom and patient studies

  • Isaac Shiri
  • Arman Rahmim
  • Pardis Ghaffarian
  • Parham Geramifar
  • Hamid AbdollahiEmail author
  • Ahmad Bitarafan-RajabiEmail author
Nuclear Medicine



The purpose of this study was to investigate the robustness of different PET/CT image radiomic features over a wide range of different reconstruction settings.


Phantom and patient studies were conducted, including two PET/CT scanners. Different reconstruction algorithms and parameters including number of sub-iterations, number of subsets, full width at half maximum (FWHM) of Gaussian filter, scan time per bed position and matrix size were studied. Lesions were delineated and one hundred radiomic features were extracted. All radiomics features were categorized based on coefficient of variation (COV).


Forty seven percent features showed COV ≤ 5% and 10% of which showed COV > 20%. All geometry based, 44% and 41% of intensity based and texture based features were found as robust respectively. In regard to matrix size, 56% and 6% of all features were found non-robust (COV > 20%) and robust (COV ≤ 5%) respectively.


Variability and robustness of PET/CT image radiomics in advanced reconstruction settings is feature-dependent, and different settings have different effects on different features. Radiomic features with low COV can be considered as good candidates for reproducible tumour quantification in multi-center studies.

Key Points

PET/CT image radiomics is a quantitative approach assessing different aspects of tumour uptake.

Radiomic features robustness is an important issue over different image reconstruction settings.

Variability and robustness of PET/CT image radiomics in advanced reconstruction settings is feature-dependent.

Robust radiomic features can be considered as good candidates for tumour quantification


PET/CT Radiomics Robustness Reconstruction settings Quantification 



Positron Emission Tomography


Computed Tomography


Standard Uptake Value


Non-Small Cell Lung Carcinoma


Magnetic Resonance Imaging


National Electrical Manufacturers Association








Lesions to Background Ratio


General Electric


Ordered Subset Expectation Maximization


Point Spread Function


Time of Flight


Full Width at Half Maximum


Volume of Interest


Gray Level Co-occurrence Matrix


Gray-Level Run-Length Matrix


Gray-Level Size Zone Matrix


Neighboring Gray Level Dependence


Neighborhood Gray-Tone Difference Matrix


Texture Feature Coding


Texture Spectrum


Coefficient Of Variation


Inter-Class Correlation


Filtered Back Projection


Response Evaluation Criteria in Solid Tumours


PET Response Criteria in Solid Tumours



The authors sincerely thank the PET/CT Departments at Masih Daneshvari and Shariati Hospitals for their collaboration and facilities.

Compliance with ethical standards


The scientific guarantor of this publication is Hamid Abdollahi, BS, MS, PhD.

Conflict of interest

The authors of this manuscript declare no relationships with any companies, whose products or services may be related to the subject matter of the article.


This study has received funding by the Iran University of Medical Sciences, Tehran, Iran with the grant number 27870.

Statistics and biometry

All authors kindly provided statistical advice for this manuscript.

One of the authors has significant statistical expertise.

Ethical approval

Institutional Review Board approval was obtained.

Informed consent

Written informed consent was obtained from all subjects (patients) in this study.


• prospective

• diagnostic or prognostic study/experimental

• multicenter study

Supplementary material

330_2017_4859_MOESM1_ESM.docx (19 kb)
ESM 1 (DOCX 18 kb)
330_2017_4859_MOESM2_ESM.docx (19 kb)
ESM 1 (DOCX 18 kb)
330_2017_4859_MOESM3_ESM.docx (19 kb)
ESM 3 (DOCX 18 kb)
330_2017_4859_MOESM4_ESM.docx (19 kb)
ESM 4 (DOCX 18 kb)
330_2017_4859_MOESM5_ESM.docx (19 kb)
ESM 5 (DOCX 18 kb)
330_2017_4859_MOESM6_ESM.docx (18 kb)
ESM 6 (DOCX 18 kb)
330_2017_4859_MOESM7_ESM.docx (18 kb)
ESM 7 (DOCX 18 kb)
330_2017_4859_MOESM8_ESM.docx (18 kb)
ESM 8 (DOCX 18 kb)
330_2017_4859_MOESM9_ESM.docx (18 kb)
ESM 9 (DOCX 18 kb)
330_2017_4859_MOESM10_ESM.docx (18 kb)
ESM 10 (DOCX 18 kb)
330_2017_4859_MOESM11_ESM.docx (19 kb)
ESM 11 (DOCX 18 kb)
330_2017_4859_MOESM12_ESM.docx (18 kb)
ESM 12 (DOCX 18 kb)
330_2017_4859_MOESM13_ESM.docx (23 kb)
ESM 13 (DOCX 22 kb)
330_2017_4859_MOESM14_ESM.docx (19 kb)
ESM 14 (DOCX 18 kb)
330_2017_4859_MOESM15_ESM.docx (18 kb)
ESM 15 (DOCX 17 kb)


  1. 1.
    Wahl RL (2008) Principles and practice of PET and PET/CT. Lippincott Williams & Wilkins, PhiladelphiaGoogle Scholar
  2. 2.
    Rahmim A, Wahl R (2006) An overview of clinical PET/CT. Iran J Nucl Med 14:1–14Google Scholar
  3. 3.
    Hatt M, Majdoub M, Vallieres M, Tixier F, Le Rest CC, Groheux D et al (2015) F-18-FDG PET uptake characterization through texture analysis: investigating the complementary nature of heterogeneity and functional tumor volume in a multi-cancer site patient cohort. J Nucl Med 56:38–44CrossRefPubMedGoogle Scholar
  4. 4.
    Tixier F, Le Rest CC, Hatt M, Albarghach N, Pradier O, Metges JP et al (2011) Intratumor heterogeneity characterized by textural features on baseline (18)F-FDG pet images predicts response to concomitant radiochemotherapy in esophageal cancer. J Nucl Med 52:369–378CrossRefPubMedPubMedCentralGoogle Scholar
  5. 5.
    Cook GJR, Siddique M, Taylor BP, Yip C, Chicklore S, Goh V (2014) Radiomics in PET: principles and applications. Clin Transl Imaging 2:269–276CrossRefGoogle Scholar
  6. 6.
    Aerts HJWL, Velazquez ER, Leijenaar RTH, Parmar C, Grossmann P, Carvalho S et al (2014) Decoding tumour phenotype by noninvasive imaging using a quantitative radiomics approach. Nat Commun 5:4006PubMedPubMedCentralGoogle Scholar
  7. 7.
    Lambin P, Rios-Velazquez E, Leijenaar R, Carvalho S, van Stiphout RGPM, Granton P et al (2012) Radiomics: extracting more information from medical images using advanced feature analysis. Eur J Cancer 48:441–446CrossRefPubMedPubMedCentralGoogle Scholar
  8. 8.
    Kumar V, Gu YH, Basu S, Berglund A, Eschrich SA, Schabath MB et al (2012) Radiomics: the process and the challenges. Magn Reson Imaging 30:1234–1248CrossRefPubMedPubMedCentralGoogle Scholar
  9. 9.
    Lu L, Lv W, Jiang J, Ma J, Feng Q, Rahmim A et al (2016) Robustness of radiomic features in [11C]Choline and [18F]FDG PET/CT imaging of nasopharyngeal carcinoma: impact of segmentation and discretization. Mol Imaging Biol 18:935–945CrossRefPubMedGoogle Scholar
  10. 10.
    Oh J, Apte A, Folkerts M, Kohutek Z, Wu A, Rimmer A, Lee N, Deasy J. (2014) FDG-PET-based radiomics to predict local control and survival following radiotherapy. Annual Meeting of The American Association of Physicists in Medicine 2014Google Scholar
  11. 11.
    Leijenaar RTH, Carvalho S, Velazquez ER, Van Elmpt WJC, Parmar C, Hoekstra OS et al (2013) Stability of FDG-PET radiomics features: an integrated analysis of test-retest and inter-observer variability. Acta Oncol 52:1391–1397CrossRefPubMedGoogle Scholar
  12. 12.
    Soufi M, Kamali-Asl A, Geramifar P, Rahmim A (2016) A novel framework for automated segmentation and labeling of homogeneous versus heterogeneous lung tumors in [18F]FDG PET imaging. Molec Imag Biol. In Press. doi: 10.1007/s11307-016-1015-0
  13. 13.
    Chicklore S, Goh V, Siddique M, Roy A, Marsden PK, Cook GJR (2013) Quantifying tumour heterogeneity in F-18-FDG PET/CT imaging by texture analysis. Eur J Nucl Med Mol Imaging 40:133–140CrossRefPubMedGoogle Scholar
  14. 14.
    El Naqa I, Grigsby PW, Apte A, Kidd E, Donnelly E, Khullar D et al (2009) Exploring feature-based approaches in PET images for predicting cancer treatment outcomes. Pattern Recogn 42:1162–1171CrossRefGoogle Scholar
  15. 15.
    Hatt M, Le Pogam A, Visvikis D, Pradier O, Le Rest CC (2012) Impact of partial-volume effect correction on the predictive and prognostic value of baseline F-18-FDG PET images in esophageal cancer. J Nucl Med 53:12–20CrossRefPubMedPubMedCentralGoogle Scholar
  16. 16.
    Hatt M, Tixier F, Pierce L, Kinahan PE, Le Rest CC, Visvikis D (2017) Characterization of PET/CT images using texture analysis: the past, the presenta… any future? Eur J Nucl Med Mol Imaging 44:151–165CrossRefPubMedGoogle Scholar
  17. 17.
    Rahmim A, Salimpour Y, Jain S, Blinder S, Klyuzhin IS, Smith G, et al. (2016) Application of texture analysis to DAT SPECT imaging: relationship to clinical assesments. NeuroImage: Clin 12. doi:  10.1016/j.nicl.2016.02.012
  18. 18.
    Vallières M, Freeman C, Skamene S, El Naqa I (2015) A radiomics model from joint FDG-PET and MRI texture features for the prediction of lung metastases in soft-tissue sarcomas of the extremities. Phys Med Biol 60:5471CrossRefPubMedGoogle Scholar
  19. 19.
    Yang F, Thomas MA, Dehdashti F, Grigsby PW (2013) Temporal analysis of intratumoral metabolic heterogeneity characterized by textural features in cervical cancer. Eur J Nucl Med Mol Imaging 40:716–727CrossRefPubMedPubMedCentralGoogle Scholar
  20. 20.
    Tan S, Kligerman S, Chen W, Lu M, Kim G, Feigenberg S et al (2013) Spatial-temporal [18 F] FDG-PET features for predicting pathologic response of esophageal cancer to neoadjuvant chemoradiation therapy. Int J Radiat Oncol Biol Phys 85:1375–1382CrossRefPubMedGoogle Scholar
  21. 21.
    Ashrafinia S, Gonzalez EM, Mohy-ud-Din H, Jha A, Subramaniam RM, Rahmim A (2016) Adaptive PSF modeling for enhanced heterogeneity quantification in oncologic PET imaging. Proc Soc Nuc Med Med Imag Ann Meet 57:497Google Scholar
  22. 22.
    Shiri IRA, Abdollahi H, Ghafarian P, Bitarafan-Rajabi A, AY MR, BakhshaieshKaram M, (Suppl 1) (2016) Radiomics texture features variability and reproducibility in advance image reconstruction setting of oncological PET/CT. Eur J Nucl Med Mol Imaging 43:S1-S734Google Scholar
  23. 23.
    Leijenaar RT, Nalbantov G, Carvalho S, van Elmpt WJ, Troost EG, Boellaard R et al (2015) The effect of SUV discretization in quantitative FDG-PET radiomics: the need for standardized methodology in tumor texture analysis. Sci Rep 5:11075CrossRefPubMedPubMedCentralGoogle Scholar
  24. 24.
    van Velden FH, Kramer GM, Frings V, Nissen IA, Mulder ER, de Langen AJ et al (2016) Repeatability of radiomic features in non-small-cell lung cancer [18F] FDG-PET/CT studies: impact of reconstruction and delineation. Mol Imaging Biol 18:788–795CrossRefPubMedPubMedCentralGoogle Scholar
  25. 25.
    Oliver JA, Budzevich M, Zhang GG, Dilling TJ, Latifi K, Moros EG (2015) Variability of image features computed from conventional and respiratory-gated PET/CT images of lung cancer. Transl Oncol 8:524–534CrossRefPubMedPubMedCentralGoogle Scholar
  26. 26.
    Rahmim A, Qi J, Sossi V (2013) Resolution modeling in PET imaging: theory, practice, benefits, and pitfalls. Med Phys 40:064301CrossRefPubMedPubMedCentralGoogle Scholar
  27. 27.
    Tong S, Alessio AM, Kinahan PE (2010) Noise and signal properties in PSF-based fully 3D PET image reconstruction: an experimental evaluation. Phys Med Biol 55:1453–1473CrossRefPubMedPubMedCentralGoogle Scholar
  28. 28.
    Alessio A, Rahmim A, Orton CG (2013) Resolution modeling enhances PET imaging (point/counterpoint). Med Phys 40:120601CrossRefPubMedGoogle Scholar
  29. 29.
    Schaefferkoetter J, Casey M, Townsend D, El Fakhri G (2013) Clinical impact of time-of-flight and point response modeling in PET reconstructions: a lesion detection study. Phys Med Biol 58:1465–1478CrossRefPubMedPubMedCentralGoogle Scholar
  30. 30.
    Kadrmas DJ, Casey ME, Conti M, Jakoby BW, Lois C, Townsend DW (2009) Impact of time-of-flight on PET tumor detection. J Nucl Med 50:1315–1323CrossRefPubMedPubMedCentralGoogle Scholar
  31. 31.
    Moses WW (2003) Time of flight in PET revisited. IEEE Trans Nucl Sci 50:1325–1330CrossRefGoogle Scholar
  32. 32.
    Surti S (2015) Update on time-of-Flight PET imaging. J Nucl Med 56:98–105CrossRefPubMedGoogle Scholar
  33. 33.
    Aerts HJ (2016) The potential of radiomic-based phenotyping in precision medicine: a review. JAMA Oncol 2:1636–1642CrossRefPubMedGoogle Scholar
  34. 34.
    Kotasidis FA, Tsoumpas C, Rahmim A (2014) Advanced kinetic modelling strategies: towards adoption in clinical PET imaging. Clin Transl Imaging 2:219–237CrossRefGoogle Scholar
  35. 35.
    Karakatsanis NA, Lodge MA, Tahari AK, Zhou Y, Wahl RL, Rahmim A (2013) Dynamic whole body PET parametric imaging: I. Concept, acquisition protocol optimization and clinical application. Phys Med Bio 58:7391–7418CrossRefGoogle Scholar
  36. 36.
    Huang S-C (2000) Anatomy of SUV. Nucl Med Biol 27:643–646CrossRefPubMedGoogle Scholar
  37. 37.
    Nyflot MJ, Yang F, Byrd D, Bowen SR, Sandison GA, Kinahan PE (2015) Quantitative radiomics: impact of stochastic effects on textural feature analysis implies the need for standards. J Med Imaging 2:041002CrossRefGoogle Scholar
  38. 38.
    Cheng N-M, Fang Y-HD, Tsan D-L, Hsu C-H, Yen T-C (2016) Respiration-averaged CT for attenuation correction of PET images–impact on PET texture features in non-small cell lung cancer patients. PLoS One 11, e0150509CrossRefPubMedPubMedCentralGoogle Scholar
  39. 39.
    Doumou G, Siddique M, Tsoumpas C, Goh V, Cook GJ (2015) The precision of textural analysis in 18F-FDG-PET scans of oesophageal cancer. Eur Radiol 25:2805–2812CrossRefPubMedGoogle Scholar
  40. 40.
    Yan J, Chu-Shern JL, Loi HY, Khor LK, Sinha AK, Quek ST et al (2015) Impact of image reconstruction settings on texture features in 18F-FDG PET. J Nucl Med 56:1667–1673CrossRefPubMedGoogle Scholar
  41. 41.
    Bailly C, Bodet-Milin C, Couespel S, Necib H, Kraeber-Bodéré F, Ansquer C et al (2016) Revisiting the robustness of PET-based textural features in the context of multi-centric trials. PLoS One 11, e0159984CrossRefPubMedPubMedCentralGoogle Scholar
  42. 42.
    Cortes-Rodicio J, Sanchez-Merino G, Garcia-Fidalgo M, Tobalina-Larrea I (2016) Identification of low variability textural features for heterogeneity quantification of 18 F-FDG PET/CT imaging. Rev Esp Med Nucl Imagen Mol 35:379–384PubMedGoogle Scholar
  43. 43.
    Forgacs A, Jonsson HP, Dahlbom M, Daver F, DiFranco MD, Opposits G et al (2016) A study on the basic criteria for selecting heterogeneity parameters of F18-FDG PET images. PLoS One 11, e0164113CrossRefPubMedPubMedCentralGoogle Scholar
  44. 44.
    Galavis PE, Hollensen C, Jallow N, Paliwal B, Jeraj R (2010) Variability of textural features in FDG PET images due to different acquisition modes and reconstruction parameters. Acta Oncol 49:1012–1016CrossRefPubMedPubMedCentralGoogle Scholar
  45. 45.
    Eisenhauer EA, Therasse P, Bogaerts J, Schwartz LH, Sargent D, Ford R et al (2009) New response evaluation criteria in solid tumours: revised RECIST guideline (version 1.1). Eur J Cancer 45:228–247CrossRefPubMedGoogle Scholar
  46. 46.
    Wahl RL, Jacene H, Kasamon Y, Lodge MA, Suppl_1 (2009) From RECIST to PERCIST: evolving considerations for pet response criteria in solid tumors. J Nucl Med 50:122S-50SCrossRefPubMedGoogle Scholar

Copyright information

© European Society of Radiology 2017

Authors and Affiliations

  • Isaac Shiri
    • 1
  • Arman Rahmim
    • 2
    • 3
  • Pardis Ghaffarian
    • 4
    • 5
  • Parham Geramifar
    • 6
  • Hamid Abdollahi
    • 1
    Email author
  • Ahmad Bitarafan-Rajabi
    • 1
    • 7
    Email author
  1. 1.Department of Medical Physics, School of MedicineIran University of Medical SciencesTehranIran
  2. 2.Department of RadiologyJohns Hopkins UniversityBaltimoreUSA
  3. 3.Department of Electrical and Computer EngineeringJohns Hopkins UniversityBaltimoreUSA
  4. 4.Chronic Respiratory Diseases Research Center, National Research Institute of Tuberculosis and Lung Diseases (NRITLD)Shahid Beheshti University of Medical SciencesTehranIran
  5. 5.PET/CT and Cyclotron Center, Masih Daneshvari HospitalShahid Beheshti University of Medical SciencesTehranIran
  6. 6.Research Center for Nuclear Medicine, Shariati HospitalTehran University of Medical SciencesTehranIran
  7. 7.Department of Nuclear Medicine, Rajaei Cardiovascular, Medical and Research CenterIran University of Medical SciencesTehranIran

Personalised recommendations