Skip to main content

Advertisement

Log in

Retrosplenial cortical thinning as a possible major contributor for cognitive impairment in HIV patients

  • Neuro
  • Published:
European Radiology Aims and scope Submit manuscript

Abstract

Objectives

To identify brain cortical regions relevant to HIV-associated neurocognitive disorder (HAND) in HIV patients.

Methods

HIV patients with HAND (n = 10), those with intact cognition (HIV-IC; n = 12), and age-matched, seronegative controls (n = 11) were recruited. All participants were male and underwent 3-dimensional T1-weighted imaging. Both vertex-wise and region of interest (ROI) analyses were performed to analyse cortical thickness.

Results

Compared to controls, both HIV-IC and HAND showed decreased cortical thickness mainly in the bilateral primary sensorimotor areas, extending to the prefrontal and parietal cortices. When directly comparing HIV-IC and HAND, HAND showed cortical thinning in the left retrosplenial cortex, left dorsolateral prefrontal cortex, left inferior parietal lobule, bilateral superior medial prefrontal cortices, right temporoparietal junction and left hippocampus, and cortical thickening in the left middle occipital cortex. Left retrosplenial cortical thinning showed significant correlation with slower information processing, declined verbal memory and executive function, and impaired fine motor skills.

Conclusions

This study supports previous research suggesting the selective vulnerability of the primary sensorimotor cortices and associations between cortical thinning in the prefrontal and parietal cortices and cognitive impairment in HIV-infected patients. Furthermore, for the first time, we propose retrosplenial cortical thinning as a possible major contributor to HIV-associated cognitive impairment.

Key points

Primary sensorimotor and supplementary motor cortices were selectively vulnerable to HIV infection

Prefrontal and parietal cortical thinning was associated with HIV-associated cognitive impairment

Retrosplenial cortical thinning might be a major contributor to HIV-associated cognitive impairment

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

Abbreviations

DLPFC:

dorsolateral prefrontal cortex

K-AVLT:

Korean version of auditory verbal learning test

KCFT:

Korean version of complex figure test

K-WAIS:

Korean version of Wechsler Adult Intelligence Scale

HAART:

highly active antiretroviral therapy

HAND:

HIV-associated neurocognitive disorder

HIV-IC:

HIV patients with intact cognition

IPL:

inferior parietal lobule

MPFC:

medial prefrontal cortex

RNA:

ribonucleic acid

ROI:

region-of-interest

TMT A:

trail making test part A

TMT B:

trail making test part B

TPJ:

temporoparietal junction

WCST:

Wisconsin card sorting test

References

  1. Palella FJ Jr, Delaney KM, Moorman AC, Loveless MO, Fuhrer J, Satten GA et al (1998) Declining morbidity and mortality among patients with advanced human immunodeficiency virus infection. HIV Outpatient Study Investigators. N Engl J Med 338:853–860

    Article  Google Scholar 

  2. Marra CM, Zhao Y, Clifford DB, Letendre S, Evans S, Henry K et al (2009) Impact of combination antiretroviral therapy on cerebrospinal fluid HIV RNA and neurocognitive performance. AIDS 23:1359–1366

    Article  Google Scholar 

  3. Heaton RK, Clifford DB, Franklin DR Jr, Woods SP, Ake C, Vaida F et al (2010) HIV-associated neurocognitive disorders persist in the era of potent antiretroviral therapy: CHARTER Study. Neurology 75:2087–2096

    Article  CAS  Google Scholar 

  4. Benedict RH, Mezhir JJ, Walsh K, Hewitt RG (2000) Impact of human immunodeficiency virus type-1-associated cognitive dysfunction on activities of daily living and quality of life. Arch Clin Neuropsychol 15:535–544

    Article  CAS  Google Scholar 

  5. Navia BA, Rostasy K (2005) The AIDS dementia complex: clinical and basic neuroscience with implications for novel molecular therapies. Neurotox Res 8:3–24

    Article  CAS  Google Scholar 

  6. Cysique LA, Brew BJ (2011) Prevalence of non-confounded HIV-associated neurocognitive impairment in the context of plasma HIV RNA suppression. J Neurovirol 17:176–183

    Article  Google Scholar 

  7. du Plessis S, Vink M, Joska JA, Koutsilieri E, Bagadia A et al (2016) Prefrontal cortical thinning in HIV infection is associated with impaired striatal functioning. J Neural Transm (Vienna). doi:10.1007/s00702-016-1571-0

    Article  Google Scholar 

  8. Thompson PM, Dutton RA, Hayashi KM, Toga AW, Lopez OL, Aizenstein HJ et al (2005) Thinning of the cerebral cortex visualized in HIV/AIDS reflects CD4+ T lymphocyte decline. Proc Natl Acad Sci U S A 102:15647–15652

    Article  CAS  Google Scholar 

  9. Kallianpur KJ, Kirk GR, Sailasuta N, Valcour V, Shiramizu B et al (2012) Regional cortical thinning associated with detectable levels of HIV DNA. Cereb Cortex 22:2065–2075

    Article  Google Scholar 

  10. Ku NS, Lee Y, Ahn JY, Song JE, Kim MH, Kim SB et al (2014) HIV-associated neurocognitive disorder in HIV-infected Koreans: the Korean NeuroAIDS Project. HIV Med 15:470–477

    Article  CAS  Google Scholar 

  11. Ann HW, Jun S, Shin NY, Han S, Ahn JY, Ahn MY et al (2016) Characteristics of resting-state functional connectivity in HIV-associated neurocognitive disorder. PLoS One 11:e0153493

    Article  Google Scholar 

  12. Antinori A, Arendt G, Becker JT, Brew BJ, Byrd DA, Cherner M et al (2007) Updated research nosology for HIV-associated neurocognitive disorders. Neurology 69:1789–1799

    Article  CAS  Google Scholar 

  13. Heaton RK et al (1993) Wisconsin card sorting test manual revised and expanded. Psychological Assessment Resources, Lutz

    Google Scholar 

  14. Kim HK (1999) Handbook of Rey-Kim memory assessment. Neuropsychology Press, Taegu

    Google Scholar 

  15. Kim M (2004) Relationships between trail making test (A, B, B-A. B/A) scores and ape, education, comparison of performance head injury patient and psychiatric patient. Korean J Clin Psychol 23:323–366

    Google Scholar 

  16. Lee T (2001) Normative values for the grooved pegboard test in adult. Phys Ther Korea 8:87–94

    Google Scholar 

  17. Yeom TH et al (1992) K-WAIS manual. Korea Guidance, Seoul

    Google Scholar 

  18. Collins DL, Neelin P, Peters TM, Evans AC (1994) Automatic 3D intersubject registration of MR volumetric data in standardized Talairach space. J Comput Assist Tomogr 18:192–205

    Article  CAS  Google Scholar 

  19. Sled JG, Zijdenbos AP, Evans AC (1998) A nonparametric method for automatic correction of intensity nonuniformity in MRI data. IEEE Trans Med Imaging 17:87–97

    Article  CAS  Google Scholar 

  20. MacDonald D, Kabani N, Avis D, Evans AC (2000) Automated 3-D extraction of inner and outer surfaces of cerebral cortex from MRI. Neuroimage 12:340–356

    Article  CAS  Google Scholar 

  21. Zijdenbos AP, Forghani R, Evans AC (2002) Automatic "pipeline" analysis of 3-D MRI data for clinical trials: application to multiple sclerosis. IEEE Trans Med Imaging 21:1280–1291

    Article  Google Scholar 

  22. Kim JS, Singh V, Lee JK, Lerch J, Ad-Dab'bagh Y, MacDonald D et al (2005) Automated 3-D extraction and evaluation of the inner and outer cortical surfaces using a Laplacian map and partial volume effect classification. Neuroimage 27:210–221

    Article  Google Scholar 

  23. Evans AC, Brain Development Cooperative Group (2006) The NIH MRI study of normal brain development. Neuroimage 30:184–202

    Article  Google Scholar 

  24. Grabner G, Janke AL, Budge MM, Smith D, Pruessner J, Collins DL (2006) Symmetric atlasing and model based segmentation: an application to the hippocampus in older adults. Med Image Comput Comput Assist Interv 9:58–66

    PubMed  Google Scholar 

  25. Smith SM (2002) Fast robust automated brain extraction. Hum Brain Mapp 17:143–155

    Article  Google Scholar 

  26. Kabani N, Le Goualher G, MacDonald D, Evans AC (2001) Measurement of cortical thickness using an automated 3-D algorithm: a validation study. Neuroimage 13:375–380

    Article  CAS  Google Scholar 

  27. Lerch JP, Evans AC (2005) Cortical thickness analysis examined through power analysis and a population simulation. Neuroimage 24:163–173

    Article  Google Scholar 

  28. Lyttelton O, Boucher M, Robbins S, Evans A (2007) An unbiased iterative group registration template for cortical surface analysis. Neuroimage 34:1535–1544

    Article  Google Scholar 

  29. Hagler DJ Jr, Saygin AP, Sereno MI (2006) Smoothing and cluster thresholding for cortical surface-based group analysis of fMRI data. Neuroimage 33:1093–1103

    Article  Google Scholar 

  30. Genovese CR, Lazar NA, Nichols T (2002) Thresholding of statistical maps in functional neuroimaging using the false discovery rate. Neuroimage 15:870–878

    Article  Google Scholar 

  31. Hellmuth J, Fletcher JL, Valcour V, Kroon E, Ananworanich J, Intasan J et al (2016) Neurologic signs and symptoms frequently manifest in acute HIV infection. Neurology 87:148–154

    Article  Google Scholar 

  32. Wilson TW, Heinrichs-Graham E, Robertson KR, Sandkovsky U, O'Neill J, Knott NL et al (2013) Functional brain abnormalities during finger-tapping in HIV-infected older adults: a magnetoencephalography study. J Neuroimmune Pharmacol 8:965–974

    Article  Google Scholar 

  33. Nomenclature and research case definitions for neurologic manifestations of human immunodeficiency virus-type 1 (HIV-1) infection. Report of a Working Group of the American Academy of Neurology AIDS Task Force (1991) Neurology 41:778-785

  34. Wang X, Michaelis EK (2010) Selective neuronal vulnerability to oxidative stress in the brain. Front Aging Neurosci 2:12

    PubMed  PubMed Central  Google Scholar 

  35. Leifer D, Kowall NW (1993) Immunohistochemical patterns of selective cellular vulnerability in human cerebral ischemia. J Neurol Sci 119:217–228

    Article  CAS  Google Scholar 

  36. Sakurai M, Aoki M, Abe K, Sadahiro M, Tabayashi K (1997) Selective motor neuron death and heat shock protein induction after spinal cord ischemia in rabbits. J Thorac Cardiovasc Surg 113:159–164

    Article  CAS  Google Scholar 

  37. Mattson MP, Magnus T (2006) Ageing and neuronal vulnerability. Nat Rev Neurosci 7:278–294

    Article  CAS  Google Scholar 

  38. Rao VR, Ruiz AP, Prasad VR (2014) Viral and cellular factors underlying neuropathogenesis in HIV associated neurocognitive disorders (HAND). AIDS Res Ther 11:13

    Article  Google Scholar 

  39. Fischer CP, Jorgen GGH, Pakkenberg B (1999) Preferential loss of large neocortical neurons during HIV infection: a study of the size distribution of neocortical neurons in the human brain. Brain Res 828:119–126

    Article  CAS  Google Scholar 

  40. Vann SD, Aggleton JP, Maguire EA (2009) What does the retrosplenial cortex do? Nat Rev Neurosci 10:792–802

    Article  CAS  Google Scholar 

  41. Desgranges B, Baron JC, Lalevee C, Giffard B, Viader F et al (2002) The neural substrates of episodic memory impairment in Alzheimer's disease as revealed by FDG-PET: relationship to degree of deterioration. Brain 125:1116–1124

    Article  Google Scholar 

  42. Pengas G, Hodges JR, Watson P, Nestor PJ (2010) Focal posterior cingulate atrophy in incipient Alzheimer's disease. Neurobiol Aging 31:25–33

    Article  Google Scholar 

  43. Jenkins TA, Vann SD, Amin E, Aggleton JP (2004) Anterior thalamic lesions stop immediate early gene activation in selective laminae of the retrosplenial cortex: evidence of covert pathology in rats? Eur J Neurosci 19:3291–3304

    Article  Google Scholar 

  44. Albasser MM, Poirier GL, Warburton EC, Aggleton JP (2007) Hippocampal lesions halve immediate-early gene protein counts in retrosplenial cortex: distal dysfunctions in a spatial memory system. Eur J Neurosci 26:1254–1266

    Article  Google Scholar 

  45. Vann SD, Albasser MM (2009) Hippocampal, retrosplenial, and prefrontal hypoactivity in a model of diencephalic amnesia: evidence towards an interdependent subcortical-cortical memory network. Hippocampus 19:1090–1102

    Article  Google Scholar 

  46. Amedi A, Raz N, Pianka P, Malach R, Zohary E (2003) Early 'visual' cortex activation correlates with superior verbal memory performance in the blind. Nat Neurosci 6:758–766

    Article  CAS  Google Scholar 

  47. Hartzell JF, Davis B, Melcher D, Miceli G, Jovicich J, Nath T et al (2016) Brains of verbal memory specialists show anatomical differences in language, memory and visual systems. Neuroimage 131:181–192

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Uicheul Yoon.

Ethics declarations

Guarantor

The scientific guarantor of this publication is Soo Mee Lim.

Conflict of interest

The authors of this manuscript declare no relationships with any companies whose products or services may be related to the subject matter of the article.

Funding

This study has received funding by the Basic Science Research Program through the National Research Foundation of Korea (NRF) funded by the Ministry of Education, Science and Technology (NRF-2013R1A1A2005412), a Chronic Infectious Disease Cohort grant (4800-4859-304-260) from the Korea Centers for Disease Control and Prevention, and BioNano Health-Guard Research Center funded by the Ministry of Science, ICT, and Future Planning of Korea as a Global Frontier Project (Grant H-GUARD_2013M3A6B2078953).

Statistics and biometry

No complex statistical methods were necessary for this paper.

Informed consent

Written informed consent was obtained from all subjects (patients) in this study.

Ethical approval

Institutional review board approval was obtained.

Study subjects or cohorts overlap

Some study subjects or cohorts have been previously reported in Ann HW, Jun S, Shin NY et al (2016) Characteristics of resting-state functional connectivity in HIV-associated neurocognitive disorder. PLoS One, 11(4), e0153493.

Methodology

• Prospective

• Case-control study

• Performed at one institution

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shin, NY., Hong, J., Choi, J.Y. et al. Retrosplenial cortical thinning as a possible major contributor for cognitive impairment in HIV patients. Eur Radiol 27, 4721–4729 (2017). https://doi.org/10.1007/s00330-017-4836-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00330-017-4836-6

Keywords

Navigation