Skip to main content
Log in

Bony morphology of the hip in professional ballet dancers compared to athletes

  • Magnetic Resonance
  • Published:
European Radiology Aims and scope Submit manuscript

Abstract

Objectives

To compare hip bony morphology between ballet dancers and a sporting control group and to determine the relationship with hip pain.

Methods

Thirty-three professional ballet dancers and 33 age- and sex-matched athletes completed questionnaires, including the Copenhagen Hip and Groin Outcome Score (HAGOS), and underwent clinical testing and 3.0-T magnetic resonance imaging to measure acetabular coverage with lateral centre edge angles, femoral head-neck junction concavity with alpha angles at anterior and superior positions, femoral neck-shaft angles, and acetabular version angles.

Results

Bony morphological measures fell within normal ranges. Dancers had higher neck-shaft angles (dancers 134.6 ± 4.6°/athletes130.8 ± 4.7°, p = 0.002), lower acetabular version angles (13.5 ± 4.7°/17.1 ± 4.7°, p = 0.003), lower superior alpha angles (38.9 ± 6.9°/46.7 ± 10.6°, p < 0.001), similar anterior alpha angles (43.6 ± 8.1/46 ± 7°, p = 0.2), and similar lateral centre edge angles (28.8 ± 4.6°/30.8 ± 4.5°, p = 0.07) compared to athletes. Abnormal morphology was detected in dancers: 3% acetabular dysplasia (athletes 0), 15% borderline dysplasia (6%), 24% cam morphology (33%), 24% coxa valga (6%), and 21% acetabular retroversion (18%). The HAGOS pain scores correlated moderately with acetabular version (r = -0.43, p = 0.02) in dancers, with no other correlation between pain and morphological parameters in either group.

Conclusions

Professional ballet dancers have hip bony morphology that differentiates them from athletes. Hip pain correlated poorly with bony morphology.

Key points

• Ballet dancers have hip bony morphology that may allow extreme hip motion.

• Morphological parameter means fell within normal reference intervals in dancers.

• Bony morphology correlates poorly with hip pain.

• The risk of hip injury due to abnormal morphology requires prospective studies.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Abbreviations

LCEA:

Lateral centre edge angle

AαA:

Anterior alpha angle

SαA:

Superior alpha angle

NSA:

Neck-shaft angle

AVA:

Acetabular version angle

HAGOS:

Copenhagen Hip and Groin Outcome Score

BMI:

Body Mass Index

FAI:

Femoroacetabular impingement

OA:

Osteoarthritis

ROM:

Range of movement

ER:

External rotation

IR:

Internal rotation

MRI:

Magnetic resonance imaging

TR:

Repetition time

TE:

Echo time

FOV:

Field of view

PDW:

Proton density weighted

PACS:

Picture archive and communication system

References

  1. Kushner S, Saboe L, Reid D, Penrose T, Grace M (1990) Relationship of turnout to hip abduction in professional ballet dancers. Am J Sports Med 18:286–291

    Article  CAS  PubMed  Google Scholar 

  2. Harris JD, Gerrie BJ, Varner KE, Lintner DM, McCulloch PC (2016) Radiographic prevalence of dysplasia, cam, and pincer deformities in elite ballet. Am J Sports Med 44:20–27

    Article  PubMed  Google Scholar 

  3. Reynolds D, Lucas J, Klaue K (1999) Retroversion of the acetabulum. A cause of hip pain. J Bone Joint Surg Br 81:281–288

    Article  CAS  PubMed  Google Scholar 

  4. Khanna V, Caragianis A, Diprimio G, Rakhra K, Beaule PE (2014) Incidence of hip pain in a prospective cohort of asymptomatic volunteers: is the cam deformity a risk factor for hip pain? Am J Sports Med 42:793–797

    Article  PubMed  Google Scholar 

  5. Ng KC, Lamontagne M, Adamczyk AP, Rakhra KS, Beaule PE (2015) Patient-specific anatomical and functional parameters provide new insights into the pathomechanism of cam FAI. Clin Orthop Relat Res 473:1289–1296

    Article  PubMed  Google Scholar 

  6. Reijman M, Hazes JM, Pols HA, Koes BW, Bierma-Zeinstra SM (2005) Acetabular dysplasia predicts incident osteoarthritis of the hip: the Rotterdam study. Arthritis Rheum 52:787–793

    Article  CAS  PubMed  Google Scholar 

  7. Lane NE, Lin P, Christiansen L et al (2000) Association of mild acetabular dysplasia with an increased risk of incident hip osteoarthritis in elderly white women: the study of osteoporotic fractures. Arthritis Rheum 43:400–404

    Article  CAS  PubMed  Google Scholar 

  8. Jacobsen S (2006) Adult hip dysplasia and osteoarthritis. Studies in radiology and clinical epidemiology. Acta Orthop Suppl 77:1–37

    Article  PubMed  Google Scholar 

  9. Tibor LM, Liebert G, Sutter R, Impellizzeri FM, Leunig M (2013) Two or more impingement and/or instability deformities are often present in patients with hip pain. Clin Orthop Relat Res 471:3762–3773

    Article  PubMed  PubMed Central  Google Scholar 

  10. Suter A, Dietrich TJ, Maier M, Dora C, Pfirrmann CW (2015) MR findings associated with positive distraction of the hip joint achieved by axial traction. Skeletal Radiol 44:787–795

    Article  PubMed  Google Scholar 

  11. Bedi A, Dolan M, Leunig M, Kelly BT (2011) Static and dynamic mechanical causes of hip pain. Arthroscopy 27:235–251

    Article  PubMed  Google Scholar 

  12. Notzli HP, Wyss TF, Stoecklin CH, Schmid MR, Treiber K, Hodler J (2002) The contour of the femoral head-neck junction as a predictor for the risk of anterior impingement. J Bone Joint Surg Br 84:556–560

    Article  CAS  PubMed  Google Scholar 

  13. Ganz R, Parvizi J, Beck M, Leunig M, Notzli H, Siebenrock KA (2003) Femoroacetabular impingement: a cause for osteoarthritis of the hip. Clin Orthop Relat Res. doi:10.1097/01.blo.0000096804.78689.c2:112-120

    Google Scholar 

  14. Sanchez Egea AJ, Valera M, Parraga Quiroga JM, Proubasta I, Noailly J, Lacroix D (2014) Impact of hip anatomical variations on the cartilage stress: a finite element analysis towards the biomechanical exploration of the factors that may explain primary hip arthritis in morphologically normal subjects. Clin Biomech (Bristol, Avon) 29:444–450

    Article  Google Scholar 

  15. Dolan MM, Heyworth BE, Bedi A, Duke G, Kelly BT (2011) CT reveals a high incidence of osseous abnormalities in hips with labral tears. Clin Orthop Relat Res 469:831–838

    Article  PubMed  Google Scholar 

  16. Domb BG, Martin DE, Botser IB (2013) Risk factors for ligamentum teres tears. Arthroscopy 29:64–73

    Article  PubMed  Google Scholar 

  17. Siebenrock KA, Schoeniger R, Ganz R (2003) Anterior femoro-acetabular impingement due to acetabular retroversion. Treatment with periacetabular osteotomy. J Bone Joint Surg Am 85-A:278–286

    Article  CAS  PubMed  Google Scholar 

  18. Charbonnier C, Kolo FC, Duthon VB et al (2011) Assessment of congruence and impingement of the hip joint in professional ballet dancers: a motion capture study. Am J Sports Med 39:557–566

    Article  PubMed  Google Scholar 

  19. Bauman PA, Singson R, Hamilton WG (1994) Femoral neck anteversion in ballerinas. Clin Orthop Relat Res 302:57–63

  20. Duthon VB, Charbonnier C, Kolo FC et al (2013) Correlation of clinical and magnetic resonance imaging findings in hips of elite female ballet dancers. Arthroscopy 29:411–419

    Article  PubMed  Google Scholar 

  21. Sutton-Traina K, Smith JA, Jarvis DN, Lee SP, Kulig K (2015) Exploring active and passive contributors to turnout in dancers and non-dancers. Med Probl Perform Art 30:78–83

    PubMed  Google Scholar 

  22. Thorborg K, Holmich P, Christensen R, Petersen J, Roos EM (2011) The Copenhagen Hip and Groin Outcome Score (HAGOS): development and validation according to the COSMIN checklist. Br J Sports Med 45:478–491

    Article  CAS  PubMed  Google Scholar 

  23. Mayes S, Ferris AR, Smith P, Garnham A, Cook J (2016) Similar prevalence of acetabular labral tear in professional ballet dancers and sporting participants. Clin J Sport Med 26:307–313

    Article  PubMed  Google Scholar 

  24. Beighton P, Solomon L, Soskolne CL (1973) Articular mobility in an African population. Ann Rheum Dis 32:413–418

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Klemp P, Chalton D (1989) Articular mobility in ballet dancers. A follow-up study after four years. Am J Sports Med 17:72–75

    Article  CAS  PubMed  Google Scholar 

  26. Cooperman DR, Wallensten R, Stulberg SD (1983) Acetabular dysplasia in the adult. Clin Orthop Relat Res 175:79–85

  27. Tonnis D, Heinecke A (1999) Acetabular and femoral anteversion: relationship with osteoarthritis of the hip. J Bone Joint Surg Am 81:1747–1770

    Article  CAS  PubMed  Google Scholar 

  28. Harris-Hayes M, Commean PK, Patterson JD, Clohisy JC, Hillen TJ (2014) Bony abnormalities of the hip joint: a new comprehensive, reliable and radiation-free measurement method using magnetic resonance imaging. J Hip Preserv Surg 1:62–70

    Article  PubMed  PubMed Central  Google Scholar 

  29. Jamali AA, Mladenov K, Meyer DC et al (2007) Anteroposterior pelvic radiographs to assess acetabular retroversion: high validity of the "cross-over-sign". J Orthop Res 25:758–765

    Article  PubMed  Google Scholar 

  30. Doherty M, Courtney P, Doherty S et al (2008) Nonspherical femoral head shape (pistol grip deformity), neck shaft angle, and risk of hip osteoarthritis: a case-control study. Arthritis Rheum 58:3172–3182

    Article  PubMed  Google Scholar 

  31. Sutter R, Dietrich TJ, Zingg PO, Pfirrmann CW (2012) How useful is the alpha angle for discriminating between symptomatic patients with cam-type femoroacetabular impingement and asymptomatic volunteers? Radiology 264:514–521

    Article  PubMed  Google Scholar 

  32. Lepage-Saucier M, Thiery C, Larbi A, Lecouvet FE, Vande Berg BC, Omoumi P (2014) Femoroacetabular impingement: normal values of the quantitative morphometric parameters in asymptomatic hips. Eur Radiol 24:1707–1714

    Article  PubMed  Google Scholar 

  33. Higgins SW, Spratley EM, Boe RA, Hayes CW, Jiranek WA, Wayne JS (2014) A novel approach for determining three-dimensional acetabular orientation: results from two hundred subjects. J Bone Joint Surg Am 96:1776–1784

    Article  PubMed  Google Scholar 

  34. Anderson LA, Anderson MB, Kapron A et al (2016) The 2015 Frank Stinchfield Award: radiographic abnormalities common in senior athletes with well-functioning hips but not associated with osteoarthritis. Clin Orthop Relat Res 474:342–352

    Article  PubMed  Google Scholar 

  35. Gosvig KK, Jacobsen S, Sonne-Holm S, Palm H, Troelsen A (2010) Prevalence of malformations of the hip joint and their relationship to sex, groin pain, and risk of osteoarthritis: a population-based survey. J Bone Joint Surg Am 92:1162–1169

    Article  PubMed  Google Scholar 

  36. Inoue K, Wicart P, Kawasaki T et al (2000) Prevalence of hip osteoarthritis and acetabular dysplasia in French and Japanese adults. Rheumatology (Oxford) 39:745–748

    Article  CAS  Google Scholar 

  37. Engesaeter IO, Laborie LB, Lehmann TG et al (2013) Prevalence of radiographic findings associated with hip dysplasia in a population-based cohort of 2081 19-year-old Norwegians. Bone Joint J 95-B:279–285

    Article  CAS  PubMed  Google Scholar 

  38. Frank JM, Harris JD, Erickson BJ et al (2015) Prevalence of femoroacetabular impingement imaging findings in asymptomatic volunteers: a systematic review. Arthroscopy 31:1199–1204

    Article  PubMed  Google Scholar 

  39. Van Houcke J, Yau WP, Yan CH et al (2015) Prevalence of radiographic parameters predisposing to femoroacetabular impingement in young asymptomatic Chinese and white subjects. J Bone Joint Surg Am 97:310–317

    Article  PubMed  PubMed Central  Google Scholar 

  40. Lavy CB, Msamati BC, Igbigbi PS (2003) Racial and gender variations in adult hip morphology. Int Orthop 27:331–333

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Beck M, Kalhor M, Leunig M, Ganz R (2005) Hip morphology influences the pattern of damage to the acetabular cartilage: femoroacetabular impingement as a cause of early osteoarthritis of the hip. J Bone Joint Surg Br 87:1012–1018

    Article  CAS  PubMed  Google Scholar 

  42. Wyss TF, Clark JM, Weishaupt D, Notzli HP (2007) Correlation between internal rotation and bony anatomy in the hip. Clin Orthop Relat Res 460:152–158

    PubMed  Google Scholar 

  43. Hack K, Di Primio G, Rakhra K, Beaule PE (2010) Prevalence of cam-type femoroacetabular impingement morphology in asymptomatic volunteers. J Bone Joint Surg Am 92:2436–2444

    Article  PubMed  Google Scholar 

  44. Reichenbach S, Juni P, Werlen S et al (2010) Prevalence of cam-type deformity on hip magnetic resonance imaging in young males: a cross-sectional study. Arthritis Care Res (Hoboken) 62:1319–1327

    Article  Google Scholar 

  45. Audenaert EA, Peeters I, Vigneron L, Baelde N, Pattyn C (2012) Hip morphological characteristics and range of internal rotation in femoroacetabular impingement. Am J Sports Med 40:1329–1336

    Article  PubMed  Google Scholar 

  46. Siebenrock KA, Ferner F, Noble PC, Santore RF, Werlen S, Mamisch TC (2011) The cam-type deformity of the proximal femur arises in childhood in response to vigorous sporting activity. Clin Orthop Relat Res 469:3229–3240

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Carsen S, Moroz PJ, Rakhra K et al (2014) The Otto Aufranc Award. On the etiology of the cam deformity: a cross-sectional pediatric MRI study. Clin Orthop Relat Res 472:430–436

    Article  PubMed  Google Scholar 

  48. Agricola R, Heijboer MP, Ginai AZ et al (2014) A cam deformity is gradually acquired during skeletal maturation in adolescent and young male soccer players: a prospective study with minimum 2-year follow-up. Am J Sports Med 42:798–806

    Article  PubMed  Google Scholar 

  49. Sutter R, Dietrich TJ, Zingg PO, Pfirrmann CW (2012) Femoral antetorsion: comparing asymptomatic volunteers and patients with femoroacetabular impingement. Radiology 263:475–483

    Article  PubMed  Google Scholar 

  50. Henak CR, Carruth ED, Anderson AE et al (2013) Finite element predictions of cartilage contact mechanics in hips with retroverted acetabula. Osteoarthritis Cartilage 21:1522–1529

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Siebenrock KA, Steppacher SD, Haefeli PC, Schwab JM, Tannast M (2013) Valgus hip with high antetorsion causes pain through posterior extraarticular FAI. Clin Orthop Relat Res 471:3774–3780

    Article  PubMed  PubMed Central  Google Scholar 

  52. Boese CK, Dargel J, Oppermann J et al (2016) The femoral neck-shaft angle on plain radiographs: a systematic review. Skeletal Radiol 45:19–28

    Article  PubMed  Google Scholar 

  53. Mills HJ, Horne JG, Purdie GL (1993) The relationship between proximal femoral anatomy and osteoarthrosis of the hip. Clin Orthop Relat Res:205–208

  54. Hamilton D, Aronsen P, Loken JH et al (2006) Dance training intensity at 11-14 years is associated with femoral torsion in classical ballet dancers. Br J Sports Med 40:299–303, discussion 303

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Papavasiliou A, Siatras T, Bintoudi A et al (2014) The gymnasts' hip and groin: a magnetic resonance imaging study in asymptomatic elite athletes. Skeletal Radiol 43:1071–1077

    Article  CAS  PubMed  Google Scholar 

  56. Hingsammer AM, Bixby S, Zurakowski D, Yen YM, Kim YJ (2015) How do acetabular version and femoral head coverage change with skeletal maturity? Clin Orthop Relat Res 473:1224–1233

    Article  PubMed  Google Scholar 

  57. Ranawat AS, Schulz B, Baumbach SF, Meftah M, Ganz R, Leunig M (2011) Radiographic predictors of hip pain in femoroacetabular impingement. HSS J 7:115–119

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

The scientific guarantor of this publication is Jill Cook. The authors of this manuscript declare relationships with the following companies: Susan Mayes is employed by The Australian Ballet. The other authors declare that they have no competing interests. Funding from the Eirene Lucas Foundation, ANZ Trustees, Friends of The Australian Ballet (SA), Inc., and the Duncan Leary Charitable Trust is gratefully acknowledged. Prof. Cook was supported by the Australian Centre for Research into Sports Injury and its Prevention, which is one of the International Research Centres for Prevention of Injury and Protection of Athlete Health supported by the International Olympic Committee (IOC). Prof. Cook is an NHMRC practitioner fellow (ID 1058493). One of the authors has significant statistical expertise. Institutional Review Board approval was obtained. Written informed consent was obtained from all subjects (patients) in this study. Some study subjects or cohorts have been previously reported in ‘Similar Prevalence of Acetabular Labral Tear in Professional Ballet Dancers and Sporting Participants’ CJSM 2016 and ‘Atraumatic tears of the ligamentum teres are more frequent in professional ballet dancers than a sporting population’ Skeletal Radiol 2016.

Methodology: case-control study, performed at one institution.

The authors sincerely thank the past and present dancers of The Australian Ballet who participated in the study. We thank the staff of MIA East Melbourne Radiology for their support in image acquisition. We thank S. Emery for assisting in data acquisition and collation. We thank P. Baird-Colt, P. Stellar, S. Black, J. Carr, J. Pugh, and W. Tardif for their assistance in collection of clinical data. We thank G. Scott and E. Scase for assisting in participant recruitment and J. Gildea for assistance in manuscript preparation.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Susan Mayes.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mayes, S., Ferris, AR., Smith, P. et al. Bony morphology of the hip in professional ballet dancers compared to athletes. Eur Radiol 27, 3042–3049 (2017). https://doi.org/10.1007/s00330-016-4667-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00330-016-4667-x

Keywords

Navigation