European Radiology

, Volume 27, Issue 5, pp 2119–2128 | Cite as

3D-black-blood 3T-MRI for the diagnosis of thoracic large vessel vasculitis: A feasibility study

  • Karla Maria TreitlEmail author
  • Stefan Maurus
  • Nora Narvina Sommer
  • Hendrik Kooijman-Kurfuerst
  • Eva Coppenrath
  • Marcus Treitl
  • Michael Czihal
  • Ulrich Hoffmann
  • Claudia Dechant
  • Hendrik Schulze-Koops
  • Tobias Saam
Magnetic Resonance



To evaluate the feasibility of T1w-3D black-blood turbo spin echo (TSE) sequence with variable flip angles for the diagnosis of thoracic large vessel vasculitis (LVV).


Thirty-five patients with LVV, diagnosed according to the current standard of reference, and 35 controls were imaged at 3.0T using 1.2 × 1.3 × 2.0 mm3 fat-suppressed, T1w-3D, modified Volumetric Isotropic TSE Acquisition (mVISTA) pre- and post-contrast. Applying a navigator and peripheral pulse unit triggering (PPU), the total scan time was 10–12 min. Thoracic aorta and subclavian and pulmonary arteries were evaluated for image quality (IQ), flow artefact intensity, diagnostic confidence, concentric wall thickening and contrast enhancement (CWT, CCE) using a 4-point scale.


IQ was good in all examinations (3.25 ± 0.72) and good to excellent in 342 of 408 evaluated segments (83.8 %), while 84.1 % showed no or minor flow artefacts. The interobserver reproducibility for the identification of CCE and CWT was 0.969 and 0.971 (p < 0.001) with an average diagnostic confidence of 3.47 ± 0.64. CCE and CWT were strongly correlated (Cohen’s k = 0.87; P < 0.001) and significantly more frequent in the LVV-group (52.8 % vs. 1.0 %; 59.8 % vs. 2.4 %; P < 0.001).


Navigated fat-suppressed T1w-3D black-blood MRI with PPU-triggering allows diagnosis of thoracic LVV.

Key Points

Cross-sectional imaging is frequently applied in the diagnosis of LVV.

Navigated, PPU-triggered, T1w-3D mVISTA pre- and post contrast takes 10–12 min.

In this prospective, single-centre study, T1w-3D mVISTA accurately depicted large thoracic vessels.

T1w-3D mVISTA visualized CWT/CCW as correlates of mural inflammation in LVV.

T1w-3D mVISTA might be an alternative diagnostic tool without ionizing radiation.


Systemic vasculitis Magnetic resonance imaging Giant cell arteritis Takayasu arteritis Aortitis 







American College of Rheumatology


Black blood


Colour duplex ultrasound


Concentric contrast enhancement


Concentric wall thickening


Diagnostic confidence level


Echo train length


Flow artefact intensity




Large vessel vasculitis


Magnetic resonance imaging


Positron emission tomography/computed tomography




Temporal artery biopsy


Turbo spin-echo


Modified Volumetric ISotropic TSE Acquisition



The scientific guarantor of this publication is Prof. Dr. Tobias Saam. The authors of this manuscript declare relationships with the following companies: Dr. Hendrik Kooijman-Kurfuerst is a physicist, who works for Philips Healthcare. He modified the original VISTA sequence and so developed the mVISTA sequence.

The other authors of this manuscript declare no relationships with any companies, whose products or services may be related to the subject matter of the article. The authors state that this work has not received any funding. One of the authors has significant statistical expertise. Institutional Review Board approval was obtained. Written informed consent was obtained from all subjects (patients) in this study. Some study subjects or cohorts have been previously reported at the RSNA Meeting 2014 and at the ISMRM meeting 2015. Pdf-versions of the corresponding power-point presentations are attached as supplemental material. The RSNA-presentation reports about 14 patients and 14 controls of the entire study cohort. The ISMRM-presentation includes the entire study cohort of 70 subjects.

Methodology: prospective, case-control study, performed at one institution.

Supplementary material

330_2016_4525_MOESM1_ESM.pdf (3.4 mb)
ESM 1 (PDF 3449 kb)
330_2016_4525_MOESM2_ESM.pdf (3.7 mb)
ESM 2 (PDF 3832 kb)


  1. 1.
    Arend WP, Michel BA, Bloch DA et al (1990) The American College of Rheumatology 1990 criteria for the classification of Takayasu arteritis. Arthritis Rheum 33:1129–1134CrossRefPubMedGoogle Scholar
  2. 2.
    Hunder GG, Bloch DA, Michel BA et al (1990) The American College of Rheumatology 1990 criteria for the classification of giant cell arteritis. Arthritis Rheum 33:1122–1128CrossRefPubMedGoogle Scholar
  3. 3.
    Monach PA (2014) Biomarkers in vasculitis. Curr Opin Rheumatol 26:24–30CrossRefPubMedPubMedCentralGoogle Scholar
  4. 4.
    Fries JF, Hunder GG, Bloch DA et al (1990) The American College of Rheumatology 1990 criteria for the classification of vasculitis. Summary. Arthritis Rheum 33:1135–1136CrossRefPubMedGoogle Scholar
  5. 5.
    Nesher G (2014) The diagnosis and classification of giant cell arteritis. J Autoimmun 48–49:73–75CrossRefPubMedGoogle Scholar
  6. 6.
    de Souza AW, de Carvalho JF (2014) Diagnostic and classification criteria of Takayasu arteritis. J Autoimmun 48–49:79–83CrossRefPubMedGoogle Scholar
  7. 7.
    Mukhtyar C, Guillevin L, Cid MC et al (2009) EULAR recommendations for the management of primary small and medium vessel vasculitis. Ann Rheum Dis 68:310–317CrossRefPubMedGoogle Scholar
  8. 8.
    Grayson PC, Maksimowicz-McKinnon K, Clark TM et al (2012) Distribution of arterial lesions in Takayasu’s arteritis and giant cell arteritis. Ann Rheum Dis 71:1329–1334CrossRefPubMedPubMedCentralGoogle Scholar
  9. 9.
    Park MC, Lee SW, Park YB, Chung NS, Lee SK (2005) Clinical characteristics and outcomes of Takayasu’s arteritis: analysis of 108 patients using standardized criteria for diagnosis, activity assessment, and angiographic classification. Scand J Rheumatol 34:284–292CrossRefPubMedGoogle Scholar
  10. 10.
    Ohigashi H, Haraguchi G, Konishi M et al (2012) Improved prognosis of Takayasu arteritis over the past decade--comprehensive analysis of 106 patients. Circ J 76:1004–1011CrossRefPubMedGoogle Scholar
  11. 11.
    Evans JM, O'Fallon WM, Hunder GG (1995) Increased incidence of aortic aneurysm and dissection in giant cell (temporal) arteritis. A population-based study. Ann Intern Med 122:502–507CrossRefPubMedGoogle Scholar
  12. 12.
    Nuenninghoff DM, Hunder GG, Christianson TJ, McClelland RL, Matteson EL (2003) Incidence and predictors of large-artery complication (aortic aneurysm, aortic dissection, and/or large-artery stenosis) in patients with giant cell arteritis: a population-based study over 50 years. Arthritis Rheum 48:3522–3531CrossRefPubMedGoogle Scholar
  13. 13.
    Gonzalez-Gay MA, Garcia-Porrua C, Pineiro A, Pego-Reigosa R, Llorca J, Hunder GG (2004) Aortic aneurysm and dissection in patients with biopsy-proven giant cell arteritis from northwestern Spain: a population-based study. Medicine (Baltimore) 83:335–341CrossRefGoogle Scholar
  14. 14.
    Cyran CC, Sourbron S, Bochmann K et al (2011) Quantification of supra-aortic arterial wall inflammation in patients with arteritis using high resolution dynamic contrast-enhanced magnetic resonance imaging: initial results in correlation to [18F]-FDG PET/CT. Investig Radiol 46:594–599CrossRefGoogle Scholar
  15. 15.
    Muto G, Yamashita H, Takahashi Y et al (2014) Large vessel vasculitis in elderly patients: early diagnosis and steroid-response evaluation with FDG-PET/CT and contrast-enhanced CT. Rheumatol Int. doi: 10.1007/s00296-014-2985-3 PubMedGoogle Scholar
  16. 16.
    Bartels AL, Zeebregts CJ, Bijl M, Tio RA, Slart RH (2009) Fused FDG-PET and MRI imaging of Takayasu arteritis in vertebral arteries. Ann Nucl Med 23:753–756CrossRefPubMedGoogle Scholar
  17. 17.
    Bley TA, Wieben O, Uhl M et al (2005) Integrated head-thoracic vascular MRI at 3 T: assessment of cranial, cervical and thoracic involvement of giant cell arteritis. MAGMA 18:193–200CrossRefPubMedGoogle Scholar
  18. 18.
    Pfefferkorn T, Schuller U, Cyran C et al (2010) Giant cell arteritis of the Basal cerebral arteries: correlation of MRI, dsa, and histopathology. Neurology 74:1651–1653CrossRefPubMedGoogle Scholar
  19. 19.
    Saam T, Habs M, Pollatos O et al (2010) High-resolution black-blood contrast-enhanced T1 weighted images for the diagnosis and follow-up of intracranial arteritis. Br J Radiol 83:e182–e184CrossRefPubMedPubMedCentralGoogle Scholar
  20. 20.
    Mani V, Itskovich VV, Szimtenings M et al (2004) Rapid extended coverage simultaneous multisection black-blood vessel wall MR imaging. Radiology 232:281–288CrossRefPubMedGoogle Scholar
  21. 21.
    Bley TA, Wieben O, Uhl M, Thiel J, Schmidt D, Langer M (2005) High-resolution MRI in giant cell arteritis: imaging of the wall of the superficial temporal artery. AJR Am J Roentgenol 184:283–287CrossRefPubMedGoogle Scholar
  22. 22.
    Busse RF, Hariharan H, Vu A, Brittain JH (2006) Fast spin echo sequences with very long echo trains: design of variable refocusing flip angle schedules and generation of clinical T2 contrast. Magn Reson Med 55:1030–1037CrossRefPubMedGoogle Scholar
  23. 23.
    Busse RF, Brau AC, Vu A et al (2008) Effects of refocusing flip angle modulation and view ordering in 3D fast spin echo. Magn Reson Med 60:640–649CrossRefPubMedPubMedCentralGoogle Scholar
  24. 24.
    Mugler JP 3rd (2014) Optimized three-dimensional fast-spin-echo MRI. J Magn Reson Imaging 39:745–767CrossRefPubMedGoogle Scholar
  25. 25.
    Fan Z, Zhang Z, Chung YC et al (2010) Carotid arterial wall MRI at 3T using 3D variable-flip-angle turbo spin-echo (TSE) with flow-sensitive dephasing (FSD). J Magn Reson Imaging 31:645–654CrossRefPubMedPubMedCentralGoogle Scholar
  26. 26.
    Sakurai K, Miura T, Sagisaka T et al (2013) Evaluation of luminal and vessel wall abnormalities in subacute and other stages of intracranial vertebrobasilar artery dissections using the volume isotropic turbo-spin-echo acquisition (VISTA) sequence: a preliminary study. J Neuroradiol 40:19–28CrossRefPubMedGoogle Scholar
  27. 27.
    Qiao Y, Steinman DA, Qin Q et al (2011) Intracranial arterial wall imaging using three-dimensional high isotropic resolution black blood MRI at 3.0 Tesla. J Magn Reson Imaging 34:22–30CrossRefPubMedGoogle Scholar
  28. 28.
    Treitl KM, Treitl M, Kooijman-Kurfuerst H et al (2015) Three-dimensional black-blood t1-weighted turbo spin-echo techniques for the diagnosis of deep vein thrombosis in comparison with contrast-enhanced magnetic resonance imaging: a pilot study. Investig Radiol 50:401–408CrossRefGoogle Scholar
  29. 29.
    Both M, Nolle B, von Forstner C, Moosig F, Gross WL, Heller M (2009) Imaging techniques in the evaluation of primary large vessel vasculitides: part 1: angiography, interventional therapy, and magnetic resonance imaging. Z Rheumatol 68:471–484CrossRefPubMedGoogle Scholar
  30. 30.
    Brack A, Martinez-Taboada V, Stanson A, Goronzy JJ, Weyand CM (1999) Disease pattern in cranial and large-vessel giant cell arteritis. Arthritis Rheum 42:311–317CrossRefPubMedGoogle Scholar
  31. 31.
    Aschwanden M, Daikeler T, Kesten F et al (2013) Temporal artery compression sign--a novel ultrasound finding for the diagnosis of giant cell arteritis. Ultraschall Med 34:47–50PubMedGoogle Scholar
  32. 32.
    Aschwanden M, Imfeld S, Staub D et al (2015) The ultrasound compression sign to diagnose temporal giant cell arteritis shows an excellent interobserver agreement. Clin Exp Rheumatol 33:S-113–S-115Google Scholar
  33. 33.
    Kermani TA, Warrington KJ (2013) Polymyalgia rheumatica. Lancet 381:63–72CrossRefPubMedGoogle Scholar
  34. 34.
    Wasserman BA, Wityk RJ, Trout HH 3rd, Virmani R (2005) Low-grade carotid stenosis: looking beyond the lumen with MRI. Stroke 36:2504–2513CrossRefPubMedGoogle Scholar
  35. 35.
    Yamada K, Yoshimura S, Kawasaki M et al (2011) Embolic complications after carotid artery stenting or carotid endarterectomy are associated with tissue characteristics of carotid plaques evaluated by magnetic resonance imaging. Atherosclerosis 215:399–404CrossRefPubMedGoogle Scholar
  36. 36.
    Norenberg D, Ebersberger HU, Diederichs G, Hamm B, Botnar RM, Makowski MR (2015) Molecular magnetic resonance imaging of atherosclerotic vessel wall disease. Eur Radiol. doi: 10.1007/s00330-015-3881-2 PubMedGoogle Scholar
  37. 37.
    Swartz RH, Bhuta SS, Farb RI et al (2009) Intracranial arterial wall imaging using high-resolution 3-tesla contrast-enhanced MRI. Neurology 72:627–634CrossRefPubMedGoogle Scholar
  38. 38.
    Schmidt WA, Kraft HE, Vorpahl K, Volker L, Gromnica-Ihle EJ (1997) Color duplex ultrasonography in the diagnosis of temporal arteritis. N Engl J Med 337:1336–1342CrossRefPubMedGoogle Scholar
  39. 39.
    Bley TA, Markl M, Schelp M et al (2008) Mural inflammatory hyperenhancement in MRI of giant cell (temporal) arteritis resolves under corticosteroid treatment. Rheumatology (Oxford) 47:65–67CrossRefGoogle Scholar
  40. 40.
    Veldhoen S, Klink T, Geiger J et al (2014) MRI displays involvement of the temporalis muscle and the deep temporal artery in patients with giant cell arteritis. Eur Radiol 24:2971–2979CrossRefPubMedGoogle Scholar
  41. 41.
    Kuker W (2007) Cerebral vasculitis: imaging signs revisited. Neuroradiology 49:471–479CrossRefPubMedGoogle Scholar
  42. 42.
    Kuker W, Gaertner S, Nagele T et al (2008) Vessel wall contrast enhancement: a diagnostic sign of cerebral vasculitis. Cerebrovasc Dis 26:23–29CrossRefPubMedPubMedCentralGoogle Scholar
  43. 43.
    Besson FL, Parienti JJ, Bienvenu B et al (2011) Diagnostic performance of (1)(8)F-fluorodeoxyglucose positron emission tomography in giant cell arteritis: a systematic review and meta-analysis. Eur J Nucl Med Mol Imaging 38:1764–1772CrossRefPubMedGoogle Scholar
  44. 44.
    Treglia G, Mattoli MV, Leccisotti L, Ferraccioli G, Giordano A (2011) Usefulness of whole-body fluorine-18-fluorodeoxyglucose positron emission tomography in patients with large-vessel vasculitis: a systematic review. Clin Rheumatol 30:1265–1275CrossRefPubMedGoogle Scholar
  45. 45.
    de Leeuw K, Bijl M, Jager PL (2004) Additional value of positron emission tomography in diagnosis and follow-up of patients with large vessel vasculitides. Clin Exp Rheumatol 22:S21–S26PubMedGoogle Scholar
  46. 46.
    Li AE, Kamel I, Rando F et al (2004) Using MRI to assess aortic wall thickness in the multiethnic study of atherosclerosis: distribution by race, sex, and age. AJR Am J Roentgenol 182:593–597CrossRefPubMedGoogle Scholar
  47. 47.
    Rosero EB, Peshock RM, Khera A, Clagett P, Lo H, Timaran CH (2011) Sex, race, and age distributions of mean aortic wall thickness in a multiethnic population-based sample. J Vasc Surg 53:950–957CrossRefPubMedGoogle Scholar
  48. 48.
    Karassa FB, Matsagas MI, Schmidt WA, Ioannidis JP (2005) Meta-analysis: test performance of ultrasonography for giant-cell arteritis. Ann Intern Med 142:359–369CrossRefPubMedGoogle Scholar
  49. 49.
    Salvarani C, Silingardi M, Ghirarduzzi A et al (2002) Is duplex ultrasonography useful for the diagnosis of giant-cell arteritis? Ann Intern Med 137:232–238CrossRefPubMedGoogle Scholar

Copyright information

© European Society of Radiology 2016

Authors and Affiliations

  • Karla Maria Treitl
    • 1
    • 2
    Email author
  • Stefan Maurus
    • 1
  • Nora Narvina Sommer
    • 1
  • Hendrik Kooijman-Kurfuerst
    • 3
  • Eva Coppenrath
    • 1
  • Marcus Treitl
    • 1
  • Michael Czihal
    • 4
  • Ulrich Hoffmann
    • 4
  • Claudia Dechant
    • 5
  • Hendrik Schulze-Koops
    • 5
  • Tobias Saam
    • 1
    • 2
  1. 1.Institute for Clinical Radiology, LMU MunichMunichGermany
  2. 2.German Center for Cardiovascular Disease Research (DZHK e. V.)MunichGermany
  3. 3.Philips HealthcareHamburgGermany
  4. 4.Division of Vascular Medicine, Medical Clinic and Policlinic IVLMU MunichMunichGermany
  5. 5.Division of Rheumatology and Clinical Immunology, Medical Clinic and Policlinic IVLMU MunichMunichGermany

Personalised recommendations