European Radiology

, Volume 27, Issue 3, pp 1161–1168 | Cite as

Larger corpus callosum and reduced orbitofrontal cortex homotopic connectivity in codeine cough syrup-dependent male adolescents and young adults

  • Ying-wei QiuEmail author
  • Xiao-fei Lv
  • Gui-hua Jiang
  • Huan-Huan Su
  • Xiao-fen Ma
  • Jun-zhang Tian
  • Fu-zhen Zhuo



To characterize interhemispheric functional and anatomical connectivity and their relationships with impulsive behaviour in codeine-containing cough syrup (CCS)-dependent male adolescents and young adults.


We compared volumes of corpus callosum (CC) and its five subregion and voxel-mirrored homotopic functional connectivity (VMHC) in 33 CCS-dependent male adolescents and young adults and 38 healthy controls, group-matched for age, education and smoking status. Barratt impulsiveness scale (BIS.11) was used to assess participant impulsive behaviour. Abnormal CC subregions and VMHC revealed by group comparison were extracted and correlated with impulsive behaviour and duration of CCS use.


We found selective increased mid-posterior CC volume in CCS-dependent male adolescents and young adults and detected decreased homotopic interhemispheric functional connectivity of medial orbitofrontal cortex (OFC). Moreover, impairment of VMHC was associated with the impulsive behaviour and correlated with the duration of CCS abuse in CCS-dependent male adolescents and young adults.


These findings reveal CC abnormalities and disruption of interhemispheric homotopic connectivity in CCS-dependent male adolescents and young adults, which provide a novel insight into the impact of interhemispheric disconnectivity on impulsive behaviour in substance addiction pathophysiology.

Key Points

CCS-dependent individuals (patients) had selective increased volumes of mid-posterior corpus callosum

Patients had attenuated interhemispheric homotopic FC (VMHC) of bilateral orbitofrontal cortex

Impairment of VMHC correlated with impulsive behaviour in patients

Impairment of VMHC correlated with the CCS duration in patients


Cough medicine Interhemispheric Corpus callosum Addiction Connectivity 



This work was supported by the grants from the Natural Scientific Foundation of China [Grant No. 81201084, 81560283], the Natural Scientific Foundation of Jiangxi Province, China [Grant No. 20151BAB205049], and Planned Science and Technology Project of Guangdong Province, China [Grant No. 2011B031800044]. We thank LetPub ( for its linguistic assistance during the preparation of this manuscript.

The scientific guarantor of this publication is Professor Junzhang Tian. The authors of this manuscript declare no relationships with any companies whose products or services may be related to the subject matter of the article. No complex statistical methods were necessary for this paper. Institutional review board approval was obtained. Written informed consent was obtained from all subjects (patients) in this study. No study subjects or cohorts have been previously reported. Methodology: prospective, case–control study, performed at one institution.

Supplementary material

330_2016_4465_MOESM1_ESM.docx (198 kb)
ESM 1 (DOCX 197 kb)


  1. 1.
    Tomasch J (1954) Size, distribution, and number of fibres in the human corpus callosum. Anat Rec 119:119–135CrossRefPubMedGoogle Scholar
  2. 2.
    Pfefferbaum A, Sullivan EV (2002) Microstructural but not macrostructural disruption of white matter in women with chronic alcoholism. Neuroimage 15:708–718CrossRefPubMedGoogle Scholar
  3. 3.
    van Ewijk H, Groenman AP, Zwiers MP et al (2015) Smoking and the developing brain: altered white matter microstructure in attention-deficit/hyperactivity disorder and healthy controls. Hum Brain Mapp 36:1180–1189CrossRefPubMedGoogle Scholar
  4. 4.
    Qiu Y, Jiang G, Su H et al (2013) Progressive white matter microstructure damage in male chronic heroin dependent individuals: a DTI and TBSS study. PLoS One 8, e63212CrossRefPubMedPubMedCentralGoogle Scholar
  5. 5.
    Bora E, Yucel M, Fornito A et al (2012) White matter microstructure in opiate addiction. Addict Biol 17:141–148CrossRefPubMedGoogle Scholar
  6. 6.
    Ma L, Hasan KM, Steinberg JL et al (2009) Diffusion tensor imaging in cocaine dependence: regional effects of cocaine on corpus callosum and effect of cocaine administration route. Drug Alcohol Depend 104:262–267CrossRefPubMedPubMedCentralGoogle Scholar
  7. 7.
    Lin F, Zhou Y, Du Y et al (2012) Abnormal white matter integrity in adolescents with internet addiction disorder: a tract-based spatial statistics study. PLoS One 7, e30253CrossRefPubMedPubMedCentralGoogle Scholar
  8. 8.
    Shek DT, Lam CM (2006) Adolescent cough medicine abuse in Hong Kong: implications for the design of positive youth development programs in Hong Kong. Int J Adolesc Med Health 18:493–503PubMedGoogle Scholar
  9. 9.
    Luders E, Thompson PM, Toga AW (2010) The development of the corpus callosum in the healthy human brain. J Neurosci 30:10985–10990CrossRefPubMedPubMedCentralGoogle Scholar
  10. 10.
    Squeglia LM, Gray KM (2016) Alcohol and drug use and the developing brain. Curr Psychiatry Rep 18:1–10CrossRefGoogle Scholar
  11. 11.
    Squeglia LM, Jacobus J, Tapert SF (2009) The influence of substance use on adolescent brain development. Clin EEG Neurosci 40:31–38CrossRefPubMedPubMedCentralGoogle Scholar
  12. 12.
    De Lacoste MC, Kirkpatrick JB, Ross ED (1985) Topography of the human corpus callosum. J Neuropathol Exp Neurol 44:578–591CrossRefPubMedGoogle Scholar
  13. 13.
    Abe O, Masutani Y, Aoki S et al (2004) Topography of the human corpus callosum using diffusion tensor tractography. J Comput Assist Tomogr 28:533–539CrossRefPubMedGoogle Scholar
  14. 14.
    Patton JH, Stanford MS, Barratt ES (1995) Factor structure of the Barratt impulsiveness scale. J Clin Psychol 51:768–774CrossRefPubMedGoogle Scholar
  15. 15.
    Yao S, Yang H, Zhu X et al (2007) An examination of the psychometric properties of the Chinese version of the Barratt Impulsiveness Scale, 11th version in a sample of Chinese adolescents. Percept Mot Skills 104:1169–1182PubMedGoogle Scholar
  16. 16.
    Fischl B (2012) FreeSurfer. Neuroimage 62:774–781CrossRefPubMedPubMedCentralGoogle Scholar
  17. 17.
    Fischl B, Salat DH, Busa E et al (2002) Whole brain segmentation: automated labeling of neuroanatomical structures in the human brain. Neuron 33:341–355CrossRefPubMedGoogle Scholar
  18. 18.
    Ji GJ, Zhang Z, Xu Q, Zang YF, Liao W, Lu G (2014) Generalized tonic-clonic seizures: aberrant interhemispheric functional and anatomical connectivity. Radiology 271:839–847CrossRefPubMedGoogle Scholar
  19. 19.
    Yan CG, Cheung B, Kelly C et al (2013) A comprehensive assessment of regional variation in the impact of head micromovements on functional connectomics. Neuroimage 76:183–201CrossRefPubMedPubMedCentralGoogle Scholar
  20. 20.
    Yan CG, Zang YF (2010) DPARSF: a MATLAB toolbox for "pipeline" data analysis of resting-state fMRI. Front Syst Neurosci 4:13Google Scholar
  21. 21.
    Zuo XN, Kelly C, Di Martino A et al (2010) Growing together and growing apart: regional and sex differences in the lifespan developmental trajectories of functional homotopy. J Neurosci 30:15034–15043CrossRefPubMedPubMedCentralGoogle Scholar
  22. 22.
    Song XW, Dong ZY, Long XY et al (2011) REST: a toolkit for resting-state functional magnetic resonance imaging data processing. PLoS One 6, e25031CrossRefPubMedPubMedCentralGoogle Scholar
  23. 23.
    Herron TJ, Kang X, Woods DL (2012) Automated measurement of the human corpus callosum using MRI. Front Neuroinform 6Google Scholar
  24. 24.
    Ojemann JG, Akbudak E, Snyder AZ, McKinstry RC, Raichle ME, Conturo TE (1997) Anatomic localization and quantitative analysis of gradient refocused echo-planar fMRI susceptibility artifacts. Neuroimage 6:156–167CrossRefPubMedGoogle Scholar
  25. 25.
    LaMantia A, Rakic P (1990) Axon overproduction and elimination in the corpus callosum of the developing rhesus monkey. J Neurosci 10:2156–2175Google Scholar
  26. 26.
    Bressoud R, Innocenti GM (1999) Typology, early differentiation, and exuberant growth of a set of cortical axons. J Comp Neurol 406:87–108Google Scholar
  27. 27.
    Halloran MC, Kalil K (1994) Dynamic behaviors of growth cones extending in the corpus callosum of living cortical brain slices observed with video microscopy. J Neurosci 14:2161–2177Google Scholar
  28. 28.
    Raine A, Lencz T, Taylor K et al (2003) Corpus callosum abnormalities in psychopathic antisocial individuals. Arch Gen Psychiatry 60:1134–1142CrossRefPubMedGoogle Scholar
  29. 29.
    Narr KL, Thompson PM, Sharma T, Moussai J, Cannestra AF, Toga AW (2000) Mapping morphology of the corpus callosum in schizophrenia. Cereb Cortex 10:40–49Google Scholar
  30. 30.
    Downhill JE, Buchsbaum MS, Wei T et al (2000) Shape and size of the corpus callosum in schizophrenia and schizotypal personality disorder. Schizophr Res 42:193–208Google Scholar
  31. 31.
    Preis S, Steinmetz H, Knorr U, Jancke L (2000) Corpus callosum size in children with developmental language disorder. Brain Res Cogn Brain Res 10:37–44CrossRefPubMedGoogle Scholar
  32. 32.
    Tang AK, Tang WK, Liang HJ, Chan F, Mak SC, Ungvari GS (2012) Clinical characteristics of cough mixture abusers referred to three substance abuse clinics in Hong Kong: a retrospective study. East Asian Arch Psychiatry 22:154–159PubMedGoogle Scholar
  33. 33.
    Giedd JN, Blumenthal J, Jeffries NO et al (1999) Development of the human corpus callosum during childhood and adolescence: a longitudinal MRI study. Prog Neuropsychopharmacol Biol Psychiatry 23:571–588CrossRefPubMedGoogle Scholar
  34. 34.
    Thompson PM, Giedd JN, Woods RP, MacDonald D, Evans AC, Toga AW (2000) Growth patterns in the developing brain detected by using continuum mechanical tensor maps. Nature 404:190–193CrossRefPubMedGoogle Scholar
  35. 35.
    Squeglia LM, Tapert SF, Sullivan EV et al (2015) Brain development in heavy-drinking adolescents. Am J Psychiatry 172:531–542CrossRefPubMedPubMedCentralGoogle Scholar
  36. 36.
    Bava S, Jacobus J, Thayer RE, Tapert SF (2013) Longitudinal changes in white matter integrity among adolescent substance users. Alcohol Clin Exp Res 37:E181–E189CrossRefPubMedGoogle Scholar
  37. 37.
    Jacobus J, Squeglia LM, Bava S, Tapert SF (2013) White matter characterization of adolescent binge drinking with and without co-occurring marijuana use: a 3-year investigation. Psychiatry Res 214:374–381CrossRefPubMedPubMedCentralGoogle Scholar
  38. 38.
    Jacobus J, Squeglia LM, Infante MA, Bava S, Tapert SF (2013) White matter integrity pre-and post marijuana and alcohol initiation in adolescence. Brain Sci 3:396–414CrossRefPubMedPubMedCentralGoogle Scholar
  39. 39.
    Lebel C, Caverhill-Godkewitsch S, Beaulieu C (2010) Age-related regional variations of the corpus callosum identified by diffusion tensor tractography. Neuroimage 52:20–31CrossRefPubMedGoogle Scholar
  40. 40.
    Tanabe J, Tregellas JR, Dalwani M et al (2009) Medial orbitofrontal cortex gray matter is reduced in abstinent substance-dependent individuals. Biol Psychiatry 65:160–164CrossRefPubMedGoogle Scholar
  41. 41.
    Ersche KD, Fletcher PC, Lewis SJ et al (2005) Abnormal frontal activations related to decision-making in current and former amphetamine and opiate dependent individuals. Psychopharmacology (Berl) 180:612–623CrossRefGoogle Scholar
  42. 42.
    Botelho MF, Relvas JS, Abrantes M et al (2006) Brain blood flow SPET imaging in heroin abusers. Ann N Y Acad Sci 1074:466–477CrossRefPubMedGoogle Scholar
  43. 43.
    Volkow ND, Wang GJ, Ma Y et al (2005) Activation of orbital and medial prefrontal cortex by methylphenidate in cocaine-addicted subjects but not in controls: relevance to addiction. J Neurosci 25:3932–3939CrossRefPubMedGoogle Scholar
  44. 44.
    Qiu YW, Han LJ, Lv XF et al (2011) Regional homogeneity changes in heroin-dependent individuals: resting-state functional MR imaging study. Radiology 261:551–559CrossRefPubMedGoogle Scholar
  45. 45.
    Yw Q, Jiang G, Ma Xf SHH, Xf L, Fz Z (2016) Aberrant interhemispheric functional and structural connectivity in heroin‐dependent individuals. Addict Biol. doi: 10.1111/adb.12387 Google Scholar
  46. 46.
    Qiu Y, Lv X, Su H et al (2013) Reduced regional homogeneity in bilateral frontostriatal system relates to higher impulsivity behavior in codeine-containing cough syrups dependent individuals. PLoS One 8, e78738CrossRefPubMedPubMedCentralGoogle Scholar
  47. 47.
    Qiu YW, Lv XF, Jiang GH et al (2014) Reduced ventral medial prefrontal cortex (vmPFC) volume and impaired vmPFC-default mode network integration in codeine-containing cough syrups users. Drug Alcohol Depend 134:314–321CrossRefPubMedGoogle Scholar
  48. 48.
    Qiu YW, Su HH, Lv XF, Jiang GH (2015) Abnormal white matter integrity in chronic users of codeine-containing cough syrups: a tract-based spatial statistics study. AJNR Am J Neuroradiol 36:50–56CrossRefPubMedGoogle Scholar
  49. 49.
    Bechara A, Damasio H, Tranel D, Damasio AR (1997) Deciding advantageously before knowing the advantageous strategy. Science 275:1293–1295CrossRefPubMedGoogle Scholar
  50. 50.
    Kringelbach ML (2005) The human orbitofrontal cortex: linking reward to hedonic experience. Nat Rev Neurosci 6:691–702CrossRefPubMedGoogle Scholar
  51. 51.
    Kelly C, Castellanos FX (2014) Strengthening connections: functional connectivity and brain plasticity. Neuropsychol Rev 24:63–76CrossRefPubMedPubMedCentralGoogle Scholar

Copyright information

© European Society of Radiology 2016

Authors and Affiliations

  • Ying-wei Qiu
    • 1
    • 2
    • 3
    Email author
  • Xiao-fei Lv
    • 4
  • Gui-hua Jiang
    • 2
  • Huan-Huan Su
    • 2
  • Xiao-fen Ma
    • 2
  • Jun-zhang Tian
    • 2
  • Fu-zhen Zhuo
    • 5
  1. 1.Department of Medical Imaging, Zhongshan Ophthalmic CenterSunYat-sen UniversityGuangzhouPeople’s Republic of China
  2. 2.Department of Medical ImagingGuangdong No.2 Provincial People’s HospitalGuangzhouPeople’s Republic of China
  3. 3.Center for Cognitive Neuroscience, Neuroscience and Behavioral Disorders ProgramDuke-National University of Singapore Graduate Medical SchoolSingaporeSingapore
  4. 4.Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South ChinaCollaborative Innovation Center for Cancer MedicineGuangzhouPeople’s Republic of China
  5. 5.Addiction Medicine DivisionGuangdong No.2 Provincial People’s HospitalGuangzhouPeople’s Republic of China

Personalised recommendations