Advertisement

European Radiology

, Volume 27, Issue 1, pp 384–392 | Cite as

Quantitative imaging of excised osteoarthritic cartilage using spectral CT

  • Kishore Rajendran
  • Caroline Löbker
  • Benjamin S. Schon
  • Christopher J. Bateman
  • Raja Aamir Younis
  • Niels J. A. de Ruiter
  • Alex I. Chernoglazov
  • Mohsen Ramyar
  • Gary J. Hooper
  • Anthony P. H. Butler
  • Tim B. F. Woodfield
  • Nigel G. AndersonEmail author
Molecular Imaging

Abstract

Objectives

To quantify iodine uptake in articular cartilage as a marker of glycosaminoglycan (GAG) content using multi-energy spectral CT.

Methods

We incubated a 25-mm strip of excised osteoarthritic human tibial plateau in 50 % ionic iodine contrast and imaged it using a small-animal spectral scanner with a cadmium telluride photon-processing detector to quantify the iodine through the thickness of the articular cartilage. We imaged both spectroscopic phantoms and osteoarthritic tibial plateau samples. The iodine distribution as an inverse marker of GAG content was presented in the form of 2D and 3D images after applying a basis material decomposition technique to separate iodine in cartilage from bone. We compared this result with a histological section stained for GAG.

Results

The iodine in cartilage could be distinguished from subchondral bone and quantified using multi-energy CT. The articular cartilage showed variation in iodine concentration throughout its thickness which appeared to be inversely related to GAG distribution observed in histological sections.

Conclusions

Multi-energy CT can quantify ionic iodine contrast (as a marker of GAG content) within articular cartilage and distinguish it from bone by exploiting the energy-specific attenuation profiles of the associated materials.

Key points

Contrast-enhanced articular cartilage and subchondral bone can be distinguished using multi-energy CT.

Iodine as a marker of glycosaminoglycan content is quantifiable with multi-energy CT.

Multi-energy CT could track alterations in GAG content occurring in osteoarthritis.

Keywords

Osteoarthritis Articular cartilage Spectral CT Glycosaminoglycan Ionic contrast media 

Abbreviations

ASIC

Application-specific integrated circuit

CdTe

Cadmium telluride

CNR

Contrast to noise ratio

CT

Computed tomography

dGEMRIC

Delayed gadolinium contrast-enhanced magnetic resonance imaging of cartilage

DTPA

Diethylenetriaminepentaacetic acid

EDTA

Ethylenediaminetetraacetic acid

GAG

Glycosaminoglycan(s)

HU

Hounsfield unit

MARS

Medipix All Resolution System

MD

Material decomposition

MRI

Magnetic resonance imaging

PBS

Phosphate buffered saline

SART

Simultaneous algebraic reconstruction technique

Notes

Acknowledgments

The scientific guarantor of this publication is Nigel Anderson. The authors of this manuscript declare relationships with the following companies: MARS Bioimaging Ltd.: Nigel Anderson holds 14 shares. Anthony Butler is a director and shareholder. This study has received funding by the Ministry of Business, Innovation and Employment, New Zealand (grant number: UOCX0805) and Arthritis Foundation New Zealand (grant number: R210). We are also grateful to Medipix2 and Medipix3 collaborations at CERN, and X-ray Imaging Europe, GmbH. The first author would like to acknowledge support from the Royal Society of New Zealand through the R. H. T. Bates award. No complex statistical methods were necessary for this paper. Institutional review board approval was obtained: Upper South B Regional Ethics Committee (URB/07/04/014). Written informed consent was obtained from all subjects (patients) in this study.

Methodology: prospective, experimental, performed at one institution.

References

  1. 1.
    Oei EH, van Tiel J, Robinson WH, Gold GE (2014) Quantitative radiologic imaging techniques for articular cartilage composition: toward early diagnosis and development of disease-modifying therapeutics for osteoarthritis. Arthritis Care Res 66:1129–1141CrossRefGoogle Scholar
  2. 2.
    Hayashi D, Guermazi A, Kwoh CK (2014) Clinical and translational potential of MRI evaluation in knee osteoarthritis. Curr Rheumatol Rep 16:391CrossRefPubMedPubMedCentralGoogle Scholar
  3. 3.
    Palmer AW, Guldberg RE, Levenston ME (2006) Analysis of cartilage matrix fixed charge density and three-dimensional morphology via contrast-enhanced microcomputed tomography. Proc Natl Acad Sci U S A 103:19255–19260CrossRefPubMedPubMedCentralGoogle Scholar
  4. 4.
    Martel-Pelletier J, Boileau C, Pelletier J-P, Roughley PJ (2008) Cartilage in normal and osteoarthritis conditions. Best Pract Res Clin Rheumatol 22:351–384CrossRefPubMedGoogle Scholar
  5. 5.
    Benders KE, Malda J, Saris DB, Dhert WJ, Steck R et al (2010) Formalin fixation affects equilibrium partitioning of an ionic contrast agent-microcomputed tomography (EPIC-muCT) imaging of osteochondral samples. Osteoarthr Cartil 18:1586–1591CrossRefPubMedGoogle Scholar
  6. 6.
    Farndale RW, Buttle DJ, Barrett AJ (1986) Improved quantitation and discrimination of sulphated glycosaminoglycans by use of dimethylmethylene blue. Biochim Biophys Acta 883:173–177CrossRefPubMedGoogle Scholar
  7. 7.
    Taylor C, Carballido-Gamio J, Majumdar S, Li X (2009) Comparison of quantitative imaging of cartilage for osteoarthritis: T2, T1rho, dGEMRIC and contrast-enhanced computed tomography. Magn Reson Imaging 27:779–784CrossRefPubMedPubMedCentralGoogle Scholar
  8. 8.
    Matzat SJ, Kogan F, Fong GW, Gold GE (2014) Imaging strategies for assessing cartilage composition in osteoarthritis. Curr Rheumatol Rep 16:1–9CrossRefGoogle Scholar
  9. 9.
    Zbyn S, Mlynarik V, Juras V, Szomolanyi P, Trattnig S (2014) Sodium MR imaging of articular cartilage pathologies. Curr Radiol Rep 2:41CrossRefPubMedPubMedCentralGoogle Scholar
  10. 10.
    Xie L, Lin AS, Levenston ME, Guldberg RE (2009) Quantitative assessment of articular cartilage morphology via EPIC-microCT. Osteoarthr Cartil 17:313–320CrossRefPubMedGoogle Scholar
  11. 11.
    Silvast TS, Kokkonen HT, Jurvelin JS, Quinn TM, Nieminen MT, Toyras J (2009) Diffusion and near equilibrium distribution of MRI and CT contrast agents in articular cartilage. Phys Med Biol 54:6823–6836CrossRefPubMedGoogle Scholar
  12. 12.
    Taguchi K, Iwanczyk JS (2013) Vision 20/20: single photon counting x-ray detectors in medical imaging. Med Phys 40:100901CrossRefPubMedPubMedCentralGoogle Scholar
  13. 13.
    Anderson NG, Butler AP (2014) Clinical applications of spectral molecular imaging: potential and challenges. Contrast Media Mol imaging 9:3–12CrossRefPubMedGoogle Scholar
  14. 14.
    Anderson NG, Butler AP, Scott NJ, Cook NJ, Butzer JS et al (2010) Spectroscopic (multi-energy) CT distinguishes iodine and barium contrast material in MICE. Eur Radiol 20:2126–2134CrossRefPubMedGoogle Scholar
  15. 15.
    Ronaldson JP, Zainon R, Scott N, Gieseg SP, Butler AP, Butler PH et al (2012) Towards quantifying the composition of soft-tissues by spectral CT with Medipix3. Med Phys 39:6847–6857CrossRefPubMedGoogle Scholar
  16. 16.
    Ballabriga R, Alozy J, Blaj G, Campbell M, Fiederle M et al (2013) The Medipix3RX: a high resolution, zero dead-time pixel detector readout chip allowing spectroscopic imaging. J Inst 8:C02016CrossRefGoogle Scholar
  17. 17.
    Panta RK, Walsh M, Bell S, Anderson N, Butler A, Butler P (2014) Energy calibration of the pixels of spectral x-ray detectors. IEEE Trans Med Imaging 34:697–706CrossRefPubMedGoogle Scholar
  18. 18.
    Burghardt AJ, Kazakia GJ, Laib A, Majumdar S (2008) Quantitative assessment of bone tissue mineralization with polychromatic micro-computed tomography. Calcif Tissue Int 83:129–138CrossRefPubMedPubMedCentralGoogle Scholar
  19. 19.
    Bateman CJ, Rajendran K, de Ruiter NJ, Butler AP, Butler PH, Renaud PF (2015) The hidden K-edge signal in K-edge imaging. arXiv preprint arXiv:150604223Google Scholar
  20. 20.
    Schon BS, Schrobback K, van der Ven M, Stroebel S, Hooper GJ, Woodfield TBF (2012) Validation of a high-throughput microtissue fabrication process for 3D assembly of tissue engineered cartilage constructs. Cell Tissue Res 347:629–642CrossRefGoogle Scholar
  21. 21.
    Tang ND, de Ruiter N, Mohr J, Butler AP, Butler PH, Aamir R (2012) Using algebraic reconstruction in computed tomography. Proceedings of the 27th conference on image and vision computing New Zealand, ACM, Dunedin, pp 216–221Google Scholar
  22. 22.
    Andersen AH, Kak AC (1984) Simultaneous algebraic reconstruction technique (SART): a superior implementation of the art algorithm. Ultrason Imaging 6:81–94CrossRefPubMedGoogle Scholar
  23. 23.
    Leng S, Yu L, Wang J, Fletcher JG, Mistretta CA, McCollough CH (2011) Noise reduction in spectral CT: reducing dose and breaking the trade-off between image noise and energy bin selection. Med Phys 38:4946–4957CrossRefPubMedGoogle Scholar
  24. 24.
    Palmer AJ, Brown CP, McNally EG, Price AJ, Tracey I et al (2013) Non-invasive imaging of cartilage in early osteoarthritis. Bone Joint J 95-B:738–746CrossRefPubMedGoogle Scholar
  25. 25.
    Hunter DJ (2011) Osteoarthritis. Best Pract Res Clin Rheumatol 25:801–814CrossRefPubMedGoogle Scholar
  26. 26.
    Trattnig S, Millington SA, Szomolanyi P, Marlovits S (2007) MR imaging of osteochondral grafts and autologous chondrocyte implantation. Eur Radiol 17:103–118CrossRefPubMedGoogle Scholar
  27. 27.
    Lu XL, Mow VC (2008) Biomechanics of articular cartilage and determination of material properties. Med Sci Sports Exerc 40:193–199CrossRefPubMedGoogle Scholar
  28. 28.
    Rajendran K, Walsh M, de Ruiter N, Chernaglazov A, Panta R et al (2014) Reducing beam hardening effects and metal artifacts using Medipix3RX: with applications from biomaterial science. J Inst 9:P03015CrossRefGoogle Scholar
  29. 29.
    Nicolaou S, Liang T, Murphy DT, Korzan JR, Ouellette H, Munk P (2012) Dual-energy CT: a promising new technique for assessment of the musculoskeletal system. AJR Am J Roentgenol 199:S78–S86CrossRefPubMedGoogle Scholar
  30. 30.
    Stewart RC, Bansal PN, Entezari V, Lusic H, Nazarian RM et al (2013) Contrast-enhanced CT with a high-affinity cationic contrast agent for imaging ex vivo bovine, intact ex vivo rabbit, and in vivo rabbit cartilage. Radiology 266:141–150CrossRefPubMedPubMedCentralGoogle Scholar

Copyright information

© European Society of Radiology 2016

Authors and Affiliations

  • Kishore Rajendran
    • 1
  • Caroline Löbker
    • 2
    • 3
  • Benjamin S. Schon
    • 2
  • Christopher J. Bateman
    • 1
  • Raja Aamir Younis
    • 1
  • Niels J. A. de Ruiter
    • 1
  • Alex I. Chernoglazov
    • 4
  • Mohsen Ramyar
    • 1
  • Gary J. Hooper
    • 2
  • Anthony P. H. Butler
    • 1
    • 5
    • 6
  • Tim B. F. Woodfield
    • 2
  • Nigel G. Anderson
    • 1
    Email author
  1. 1.Department of RadiologyUniversity of Otago - ChristchurchChristchurchNew Zealand
  2. 2.Christchurch Regenerative Medicine and Tissue Engineering Group, Department of Orthopaedic Surgery and Musculoskeletal MedicineUniversity of OtagoChristchurchNew Zealand
  3. 3.Department of Developmental BioEngineeringUniversity of TwenteEnschedeThe Netherlands
  4. 4.Human Interface Technology Laboratory New ZealandUniversity of CanterburyChristchurchNew Zealand
  5. 5.European Organisation for Nuclear Research (CERN)GenevaSwitzerland
  6. 6.MARS BioimagingChristchurchNew Zealand

Personalised recommendations