European Radiology

, Volume 26, Issue 12, pp 4465–4474 | Cite as

Software performance in segmenting ground-glass and solid components of subsolid nodules in pulmonary adenocarcinomas

  • Julien G. Cohen
  • Jin Mo Goo
  • Roh-Eul Yoo
  • Chang Min Park
  • Chang Hyun Lee
  • Bram van Ginneken
  • Doo Hyun Chung
  • Young Tae Kim



To evaluate the performance of software in segmenting ground-glass and solid components of subsolid nodules in pulmonary adenocarcinomas.


Seventy-three pulmonary adenocarcinomas manifesting as subsolid nodules were included. Two radiologists measured the maximal axial diameter of the ground-glass components on lung windows and that of the solid components on lung and mediastinal windows. Nodules were segmented using software by applying five (-850 HU to -650 HU) and nine (-130 HU to -500 HU) attenuation thresholds. We compared the manual and software measurements of ground-glass and solid components with pathology measurements of tumour and invasive components.


Segmentation of ground-glass components at a threshold of -750 HU yielded mean differences of +0.06 mm (p = 0.83, 95 % limits of agreement, 4.51 to 4.67) and -2.32 mm (p < 0.001, -8.27 to 3.63) when compared with pathology and manual measurements, respectively. For solid components, mean differences between the software (at -350 HU) and pathology measurements and between the manual (lung and mediastinal windows) and pathology measurements were -0.12 mm (p = 0.74, -5.73 to 5.55]), 0.15 mm (p = 0.73, -6.92 to 7.22), and -1.14 mm (p < 0.001, -7.93 to 5.64), respectively.


Software segmentation of ground-glass and solid components in subsolid nodules showed no significant difference with pathology.

Key Points

Software can effectively segment ground-glass and solid components in subsolid nodules.

Software measurements show no significant difference with pathology measurements.

Manual measurements are more accurate on lung windows than on mediastinal windows.


Solitary pulmonary nodule Lung cancer Subsolid nodule Adenocarcinoma Segmentation 


  1. 1.
    Goo JM, Park CM, Lee HJ (2011) Ground-glass nodules on chest CT as imaging biomarkers in the management of lung adenocarcinoma. AJR Am J Roentgenol 196:533–543CrossRefPubMedGoogle Scholar
  2. 2.
    Naidich DP, Bankier AA, MacMahon H et al (2013) Recommendations for the management of subsolid pulmonary nodules detected at CT: a statement from the Fleischner Society. Radiology 266:304–317CrossRefPubMedGoogle Scholar
  3. 3.
    Travis WD, Brambilla E, Noguchi M et al (2011) International association for the study of lung cancer/american thoracic society/european respiratory society international multidisciplinary classification of lung adenocarcinoma. J Thorac Oncol 6:244–285CrossRefPubMedPubMedCentralGoogle Scholar
  4. 4.
    Hwang EJ, Park CM, Ryu Y et al (2015) Pulmonary adenocarcinomas appearing as part-solid ground-glass nodules: is measuring solid component size a better prognostic indicator? Eur Radiol 25:558–567CrossRefPubMedGoogle Scholar
  5. 5.
    Revel MP, Bissery A, Bienvenu M, Aycard L, Lefort C, Frija G (2004) Are two-dimensional CT measurements of small noncalcified pulmonary nodules reliable? Radiology 231:453–458CrossRefPubMedGoogle Scholar
  6. 6.
    Kakinuma R, Ashizawa K, Kuriyama K et al (2012) Measurement of focal ground-glass opacity diameters on CT images: interobserver agreement in regard to identifying increases in the size of ground-glass opacities. Acad Radiol 19:389–394CrossRefPubMedGoogle Scholar
  7. 7.
    Goo JM (2011) A computer-aided diagnosis for evaluating lung nodules on chest CT: the current status and perspective. Korean J Radiol 12:145–155CrossRefPubMedPubMedCentralGoogle Scholar
  8. 8.
    Wormanns D, Kohl G, Klotz E et al (2004) Volumetric measurements of pulmonary nodules at multi-row detector CT: in vivo reproducibility. Eur Radiol 14:86–92CrossRefPubMedGoogle Scholar
  9. 9.
    Goodman LR, Gulsun M, Washington L, Nagy PG, Piacsek KL (2006) Inherent variability of CT lung nodule measurements in vivo using semiautomated volumetric measurements. AJR Am J Roentgenol 186:989–994CrossRefPubMedGoogle Scholar
  10. 10.
    Park CM, Goo JM, Lee HJ, Kim KG, Kang MJ, Shin YH (2010) Persistent pure ground-glass nodules in the lung: interscan variability of semiautomated volume and attenuation measurements. AJR Am J Roentgenol 195:W408–W414CrossRefPubMedGoogle Scholar
  11. 11.
    Oda S, Awai K, Murao K et al (2010) Computer-aided volumetry of pulmonary nodules exhibiting ground-glass opacity at MDCT. AJR Am J Roentgenol 194:398–406CrossRefPubMedGoogle Scholar
  12. 12.
    Oda S, Awai K, Murao K et al (2011) Volume-doubling time of pulmonary nodules with ground glass opacity at multidetector CT: Assessment with computer-aided three-dimensional volumetry. Acad Radiol 18:63–69CrossRefPubMedGoogle Scholar
  13. 13.
    de Hoop B, Gietema H, van de Vorst S, Murphy K, van Klaveren RJ, Prokop M (2010) Pulmonary ground-glass nodules: increase in mass as an early indicator of growth. Radiology 255:199–206CrossRefPubMedGoogle Scholar
  14. 14.
    Scholten ET, Jacobs C, van Ginneken B et al (2015) Detection and quantification of the solid component in pulmonary subsolid nodules by semiautomatic segmentation. Eur Radiol 25:488–496CrossRefPubMedGoogle Scholar
  15. 15.
    Kuhnigk JM, Dicken V, Bornemann L et al (2006) Morphological segmentation and partial volume analysis for volumetry of solid pulmonary lesions in thoracic CT scans. IEEE Trans Med Imaging 25:417–434CrossRefPubMedGoogle Scholar
  16. 16.
    de Hoop B, Gietema H, van Ginneken B, Zanen P, Groenewegen G, Prokop M (2009) A comparison of six software packages for evaluation of solid lung nodules using semi-automated volumetry: what is the minimum increase in size to detect growth in repeated CT examinations. Eur Radiol 19:800–808CrossRefPubMedGoogle Scholar
  17. 17.
    Lee KH, Goo JM, Park SJ et al (2014) Correlation between the size of the solid component on thin-section CT and the invasive component on pathology in small lung adenocarcinomas manifesting as ground-glass nodules. J Thorac Oncol 9:74–82CrossRefPubMedGoogle Scholar
  18. 18.
    Gandara DR, Aberle D, Lau D et al (2006) Radiographic imaging of bronchioloalveolar carcinoma: screening, patterns of presentation and response assessment. J Thorac Oncol 1:S20–S26CrossRefPubMedGoogle Scholar
  19. 19.
    Lee HY, Choi YL, Lee KS et al (2014) Pure ground-glass opacity neoplastic lung nodules: histopathology, imaging, and management. AJR Am J Roentgenol 202:W224–W233CrossRefPubMedGoogle Scholar
  20. 20.
    Thunnissen E, Beasley MB, Borczuk AC et al (2012) Reproducibility of histopathological subtypes and invasion in pulmonary adenocarcinoma. An international interobserver study. Mod Pathol 25:1574–1583CrossRefPubMedGoogle Scholar

Copyright information

© European Society of Radiology 2016

Authors and Affiliations

  • Julien G. Cohen
    • 1
    • 2
  • Jin Mo Goo
    • 1
    • 3
  • Roh-Eul Yoo
    • 1
  • Chang Min Park
    • 1
    • 3
  • Chang Hyun Lee
    • 1
  • Bram van Ginneken
    • 4
  • Doo Hyun Chung
    • 5
  • Young Tae Kim
    • 3
    • 6
  1. 1.Department of Radiology, Seoul National University College of Medicine, and Institute of Radiation MedicineSeoul National University Medical Research CenterSeoulKorea
  2. 2.Clinique Universitaire de Radiologie et Imagerie Médicale (CURIM)Université Joseph Fourier, Centre Hospitalier Universitaire de GrenobleGrenoble Cedex 9France
  3. 3.Cancer Research InstituteSeoul National University College of MedicineSeoulKorea
  4. 4.Department of Radiology and Nuclear MedicineRadboud University Nijmegen Medical CenterNijmegenThe Netherlands
  5. 5.Department of PathologySeoul National University College of MedicineSeoulKorea
  6. 6.Department of Thoracic and Cardiovascular SurgerySeoul National University College of MedicineSeoulKorea

Personalised recommendations