Advertisement

European Radiology

, Volume 26, Issue 12, pp 4490–4496 | Cite as

High levels of thyroid-stimulating hormone are associated with aortic wall thickness in the general population

  • Till IttermannEmail author
  • Roberto Lorbeer
  • Marcus Dörr
  • Tobias Schneider
  • Alexander Quadrat
  • Lydia Heßelbarth
  • Michael Wenzel
  • Ina Lehmphul
  • Josef Köhrle
  • Birger Mensel
  • Henry Völzke
Cardiac

Abstract

Objectives

Our aim was to investigate the association of thyroid function defined by serum concentrations of thyroid-stimulating hormone (TSH) with thoracic aortic wall thickness (AWT) as a marker of atherosclerotic processes.

Methods

We pooled data of 2,679 individuals from two independent population-based surveys of the Study of Health in Pomerania. Aortic diameter and AWT measurements were performed on a 1.5-T MRI scanner at the concentration of the right pulmonary artery displaying the ascending and the descending aorta.

Results

TSH, treated as continuous variable, was significantly associated with descending AWT (β = 0.11; 95 % confidence interval (CI) 0.02–0.21), while the association with ascending AWT was not statistically significant (β = 0.20; 95 % CI −0.01–0.21). High TSH (>3.29 mIU/L) was significantly associated with ascending (β = 0.12; 95 % CI 0.02–0.23) but not with descending AWT (β = 0.06; 95 % CI −0.04–0.16). There was no consistent association between TSH and aortic diameters.

Conclusions

Our study demonstrated that AWT values increase with increasing serum TSH concentrations. Thus, a hypothyroid state may be indicative for aortic atherosclerosis. These results fit very well to the findings of previous studies pointing towards increased atherosclerotic risk in the hypothyroid state.

Key Points

Serum TSH concentrations are positively associated with aortic wall thickness.

Serum TSH concentrations are not associated with the aortic diameters.

Serum 3,5-diiodothyronine concentrations may be positively associated with aortic wall thickness.

Keywords

High thyrotropin 3,5-diiodothyronine Aorta Atherosclerosis Epidemiology 

Notes

Acknowledgments

The scientific guarantor of this publication is Henry Völzke. The authors of this manuscript declare relationships with the following companies: Siemens Healthcare, Erlangen, Germany. The study of Health in Pomeranie is part of the Community Medicince Research Network of the University of Medicine Greifswald, which was funded by the German Federal Ministry for Education and Research, the Ministry for Education, Research and Cultural Affairs, and the Ministriy for Social Affairs of the State Mecklenburg-West Pomerania. Analyses were further supported by the German Research Foundation (DFG VO955/10-2 and DFG-SPP 1629 ThyroidTransAct: DFG VO955/12-1 and DFG KO 922/16-1) and the BMELV. Till Ittermann has significant statistical expertise. Institutional Review Board approval was obtained. Written informed consent was obtained from all subjects in this study. Since SHIP-2 and SHIP-Trend-0 are population-based studies with a comprehensive examination programme, findings on other research topics have been previously reported from SHIP-Trend-0 and SHIP-2 data. However, this paper reports findings on the association between thyroid function and aortic atherosclerosis, a topic which has not been covered in previous manuscripts from SHIP-2 and SHIP-Trend. Methodology: cross-sectional population-based study.

References

  1. 1.
    Fonarow GC (2007) The global burden of atherosclerotic vascular disease. Nat Clin Pract Cardiovasc Med 4:530–531CrossRefPubMedGoogle Scholar
  2. 2.
    Yusuf S, Ounpuu S, Anand S (2002) The global epidemic of atherosclerotic cardiovascular disease. Med Princ Pract 11:3–8CrossRefPubMedGoogle Scholar
  3. 3.
    Chambless LE, Heiss G, Folsom AR et al (1997) Association of coronary heart disease incidence with carotid arterial wall thickness and major risk factors: the Atherosclerosis Risk in Communities (ARIC) Study, 1987-1993. Am J Epidemiol 146:483–494CrossRefPubMedGoogle Scholar
  4. 4.
    Lorenz MW, Markus HS, Bots ML, Rosvall M, Sitzer M (2007) Prediction of clinical cardiovascular events with carotid intima-media thickness: a systematic review and meta-analysis. Circulation 115:459–467CrossRefPubMedGoogle Scholar
  5. 5.
    Novo S, Peritore A, Trovato RL et al (2013) Preclinical atherosclerosis and metabolic syndrome increase cardio- and cerebrovascular events rate: a 20-year follow up. Cardiovasc Diabetol 12:155CrossRefPubMedPubMedCentralGoogle Scholar
  6. 6.
    Malayeri AA, Natori S, Bahrami H et al (2008) Relation of aortic wall thickness and distensibility to cardiovascular risk factors (from the Multi-Ethnic Study of Atherosclerosis [MESA]). Am J Cardiol 102:491–496CrossRefPubMedPubMedCentralGoogle Scholar
  7. 7.
    Couturier G, Voustaniouk A, Weinberger J, Fuster V (2006) Correlation between coronary artery disease and aortic arch plaque thickness measured by non-invasive B-mode ultrasonography. Atherosclerosis 185:159–164CrossRefPubMedGoogle Scholar
  8. 8.
    Jeltsch M, Klass O, Klein S et al (2009) Aortic wall thickness assessed by multidetector computed tomography as a predictor of coronary atherosclerosis. Int J Cardiovasc Imaging 25:209–217CrossRefPubMedGoogle Scholar
  9. 9.
    Yuce G, Turkvatan A, Yener O (2014) Can aortic atherosclerosis or epicardial adipose tissue volume be used as a marker for predicting coronary artery disease? J Cardiol 65:143–149CrossRefPubMedGoogle Scholar
  10. 10.
    Bae JH, Bassenge E, Park KR, Kim KY, Schwemmer M (2003) Significance of the intima-media thickness of the thoracic aorta in patients with coronary atherosclerosis. Clin Cardiol 26:574–578CrossRefPubMedGoogle Scholar
  11. 11.
    Gupta S, Berry JD, Ayers CR et al (2010) Left ventricular hypertrophy, aortic wall thickness, and lifetime predicted risk of cardiovascular disease:the Dallas Heart Study. JACC Cardiovasc Imaging 3:605–613CrossRefPubMedGoogle Scholar
  12. 12.
    Dullaart RP, de Vries R, Roozendaal C, Kobold AC, Sluiter WJ (2007) Carotid artery intima media thickness is inversely related to serum free thyroxine in euthyroid subjects. Clin Endocrinol (Oxf) 67:668–673CrossRefGoogle Scholar
  13. 13.
    Hak AE, Pols HA, Visser TJ, Drexhage HA, Hofman A, Witteman JC (2000) Subclinical hypothyroidism is an independent risk factor for atherosclerosis and myocardial infarction in elderly women: the Rotterdam Study. Ann Intern Med 132:270–278CrossRefPubMedGoogle Scholar
  14. 14.
    Jorde R, Joakimsen O, Stensland E, Mathiesen EB (2008) Lack of significant association between intima-media thickness in the carotid artery and serum TSH level. The Tromso Study. Thyroid 18:21–25CrossRefPubMedGoogle Scholar
  15. 15.
    Takamura N, Akilzhanova A, Hayashida N et al (2009) Thyroid function is associated with carotid intima-media thickness in euthyroid subjects. Atherosclerosis 204:e77–e81CrossRefPubMedGoogle Scholar
  16. 16.
    Volzke H, Robinson DM, Schminke U et al (2004) Thyroid function and carotid wall thickness. J Clin Endocrinol Metab 89:2145–2149CrossRefPubMedGoogle Scholar
  17. 17.
    Simonetti OP, Finn JP, White RD, Laub G, Henry DA (1996) “Black blood” T2-weighted inversion-recovery MR imaging of the heart. Radiology 199:49–57CrossRefPubMedGoogle Scholar
  18. 18.
    Mensel B, Kuhn JP, Schneider T, Quadrat A, Hegenscheid K (2013) Mean thoracic aortic wall thickness determination by cine MRI with steady-state free precession: validation with dark blood imaging. Acad Radiol 20:1004–1008CrossRefPubMedGoogle Scholar
  19. 19.
    Chandran KB (1993) Flow dynamics in the human aorta. J Biomech Eng 115:611–616CrossRefPubMedGoogle Scholar
  20. 20.
    Moulakakis KG, Sokolis DP, Perrea DN et al (2007) The mechanical performance and histomorphological structure of the descending aorta in hyperthyroidism. Angiology 58:343–352CrossRefPubMedGoogle Scholar
  21. 21.
    Zaki SM, Youssef MF (2013) Thyroid hormone dysfunctions affect the structure of rat thoracic aorta: a histological and morphometric study. Folia Morphol (Warsz) 72:333–339CrossRefGoogle Scholar
  22. 22.
    Lehmphul I, Brabant G, Wallaschofski H et al (2014) Detection of 3,5-diiodothyronine in sera of patients with altered thyroid status using a new monoclonal antibody-based chemiluminescence immunoassay. Thyroid 24:1350–1360CrossRefPubMedGoogle Scholar
  23. 23.
    Pietzner M, Lehmphul I, Friedrich N et al (2014) Translating pharmacological findings from hypothyroid rodents to euthyroid humans: Is there a functional role of endogenous 3,5-T2? ThyroidGoogle Scholar
  24. 24.
    Scuteri A, Orru M, Morrell C et al (2010) Independent and additive effects of cytokine patterns and the metabolic syndrome on arterial aging in the SardiNIA Study. Atherosclerosis 215:459–464CrossRefPubMedPubMedCentralGoogle Scholar
  25. 25.
    Moreno M, de Lange P, Lombardi A, Silvestri E, Lanni A, Goglia F (2008) Metabolic effects of thyroid hormone derivatives. Thyroid 18:239–253CrossRefPubMedGoogle Scholar
  26. 26.
    Padron AS, Neto RA, Pantaleao TU et al (2014) Administration of 3,5-diiodothyronine (3,5-T2) causes central hypothyroidism and stimulates thyroid-sensitive tissues. J Endocrinol 221:415–427CrossRefPubMedPubMedCentralGoogle Scholar
  27. 27.
    Volzke H, Alte D, Schmidt CO et al (2011) Cohort Profile: The Study of Health in Pomerania. Int J Epidemiol 40:294–307CrossRefPubMedGoogle Scholar
  28. 28.
    Mensel B, Hegenscheid K, Hesselbarth L, Wenzel M, Hosten N, Puls R (2012) Thoracic and abdominal aortic diameter measurement by MRI using plain axial volumetric interpolated breath-hold examination in epidemiologic research: a validation study. Acad Radiol 19:1011–1017CrossRefPubMedGoogle Scholar
  29. 29.
    Hegenscheid K, Kuhn JP, Volzke H, Biffar R, Hosten N, Puls R (2009) Whole-body magnetic resonance imaging of healthy volunteers: Pilot study results from the population-based ship study. RoFo : Fortschritte auf dem Gebiete der Rontgenstrahlen und der Nuklearmedizin 181:748–759CrossRefPubMedGoogle Scholar
  30. 30.
    Ittermann T, Khattak RM, Nauck M, Cordova CM, Volzke H (2014) Shift of the TSH reference range with improved iodine supply in Northeast Germany. Eur J Endocrinol 172:261–267CrossRefPubMedGoogle Scholar
  31. 31.
    Royston P, Sauerbrei W (2008) Multivariable model - building: a pragmatic approach to regression anaylsis based on fractional polynomials for modelling continuous variables. John Wiley & SonsGoogle Scholar
  32. 32.
    Volzke H, Robinson DM, Spielhagen T et al (2009) Are serum thyrotropin levels within the reference range associated with endothelial function? Eur Heart J 30:217–224CrossRefPubMedGoogle Scholar
  33. 33.
    Dorr M, Ruppert J, Wallaschofski H, Felix SB, Volzke H (2008) The association of thyroid function and heart valve sclerosis. Results from a population-based study. Endocr J 55:495–502CrossRefPubMedGoogle Scholar
  34. 34.
    Ittermann T, Dorr M, Volzke H et al (2014) High serum thyrotropin levels are associated with retinal arteriolar narrowing in the general population. Thyroid 24:1473–1478CrossRefPubMedGoogle Scholar
  35. 35.
    Ittermann T, Baumeister SE, Volzke H et al (2011) Are serum TSH levels associated with oxidized low-density lipoprotein? Results from the Study of Health in Pomerania. Clin Endocrinol (Oxf) 76:526–532CrossRefGoogle Scholar
  36. 36.
    Kalsch H, Lehmann N, Mohlenkamp S et al (2013) Body-surface adjusted aortic reference diameters for improved identification of patients with thoracic aortic aneurysms: results from the population-based Heinz Nixdorf Recall study. Int J Cardiol 163:72–78CrossRefPubMedGoogle Scholar
  37. 37.
    Mensel B, Quadrat A, Schneider T et al (2014) MRI-based Determination of Reference Values of Thoracic Aortic Wall Thickness in a General Population. Eur Radiol 24:2038–2044CrossRefPubMedGoogle Scholar
  38. 38.
    Li JK (1986) Comparative cardiac mechanics: Laplace’s Law. J Theor Biol 118:339–343CrossRefPubMedGoogle Scholar
  39. 39.
    Piehl S, Heberer T, Balizs G, Scanlan TS, Kohrle J (2008) Development of a validated liquid chromatography/tandem mass spectrometry method for the distinction of thyronine and thyronamine constitutional isomers and for the identification of new deiodinase substrates. Rapid Commun Mass Spectrom 22:3286–3296CrossRefPubMedGoogle Scholar
  40. 40.
    Zhang CY, Kim S, Harney JW, Larsen PR (1998) Further characterization of thyroid hormone response elements in the human type 1 iodothyronine deiodinase gene. Endocrinology 139:1156–1163PubMedGoogle Scholar
  41. 41.
    Gereben B, Goncalves C, Harney JW, Larsen PR, Bianco AC (2000) Selective proteolysis of human type 2 deiodinase: a novel ubiquitin-proteasomal mediated mechanism for regulation of hormone activation. Mol Endocrinol 14:1697–1708CrossRefPubMedGoogle Scholar
  42. 42.
    Van den Berghe G (2014) Non-thyroidal illness in the ICU: a syndrome with different faces. Thyroid 24:1456–1465CrossRefPubMedPubMedCentralGoogle Scholar

Copyright information

© European Society of Radiology 2016

Authors and Affiliations

  • Till Ittermann
    • 1
    • 2
    Email author
  • Roberto Lorbeer
    • 3
  • Marcus Dörr
    • 2
    • 4
  • Tobias Schneider
    • 5
  • Alexander Quadrat
    • 5
  • Lydia Heßelbarth
    • 5
  • Michael Wenzel
    • 5
  • Ina Lehmphul
    • 6
  • Josef Köhrle
    • 6
  • Birger Mensel
    • 5
  • Henry Völzke
    • 1
    • 2
  1. 1.Institute for Community MedicineUniversity Medicine GreifswaldGreifswaldGermany
  2. 2.DZHK (German Center for Cardiovascular Research), partner site GreifswaldGreifswaldGermany
  3. 3.Institute for Clinical RadiologyLudwig-Maximilians-University Hospital MunichMunichGermany
  4. 4.Department of Internal Medicine B – Cardiology, Intensive Care, Pulmonary Medicine and Infectious DiseasesUniversity Medicine GreifswaldGreifswaldGermany
  5. 5.Institute of Diagnostic Radiology and NeuroradiologyUniversity Medicine GreifswaldGreifswaldGermany
  6. 6.Institut für Experimentelle EndokrinologieCharité-Universitätsmedizin BerlinBerlinGermany

Personalised recommendations