Advertisement

European Radiology

, Volume 27, Issue 1, pp 325–335 | Cite as

Detection of Functional Homotopy in Traumatic Axonal Injury

  • Jian Li
  • Lei Gao
  • Kai Xie
  • Jie Zhan
  • Xiaoping Luo
  • Huifang Wang
  • Huifang Zhang
  • Jing Zhao
  • Fuqing Zhou
  • Xianjun Zeng
  • Laichang He
  • Yulin He
  • Honghan Gong
Magnetic Resonance

Abstract

Objective

This study aimed to explore the interhemispheric intrinsic connectivity in traumatic axonal injury (TAI) patients.

Methods

Twenty-one patients with TAI (14 males, seven females; mean age, 38.71 ± 15.25 years) and 22 well-matched healthy controls (16 males, six females; mean age, 38.50 ± 13.82 years) were recruited, and from them we obtained resting-state fMRI data. Interhemispheric coordination was examined using voxel-mirrored homotopic connectivity (VMHC) and seed-based functional connectivity analysis was performed.

Results

We observed significantly decreased VMHC in a number of regions in TAI patients, including the prefrontal, temporal, occipital, parietal, and posterior cingulate cortices, thalami and cerebellar posterior lobes. Subsequent seed-based functional connectivity analysis revealed widely disrupted functional connectivity between the regions of local homotopic connectivity deficits and other areas of the brain, particularly the areas subserving the default, salience, integrative, and executive systems. The lower VMHC of the inferior frontal gyrus and basal ganglia, thalamus, and caudate were significant correlated with the Beck Depression Inventory score, Clinical Dementia Rating score, and Mini-Mental State Examination score, respectively.

Conclusion

TAI is associated with regionally decreased interhemispheric interactions and extensively disrupted seed-based functional connectivity, generating further evidence of diffuse disconnection being associated with clinical symptoms in TAI patients.

Key Points

Traumatic axonal injury is associated with decreased interhemispheric connectivity

Traumatic axonal injury couples with widely disrupted functional connectivity

These alterations support the default, salience, integrative, and executive functions

Keywords

Traumatic axonal injury Homotopy Interhemispheric connection Brain Resting-state fMRI 

Abbreviations

TAI

Traumatic axonal injury

TBI

Traumatic brain injury

VMHC

Voxel-mirrored homotopic connectivity

FMRI

Functional magnetic resonance imaging

FC

Functional connectivity

MMSE

Mini-Mental State Examination

DRS

Disability Rating Scale

BDI

Beck Depression Inventory

MAS

Motor Assessment Scale

ABS

Adaptive Behavior Scale

HAMA

Hamilton Anxiety Scale

CDR

Clinical Dementia Rating

ADL

Activity of Daily Living Scale

Notes

Acknowledgments

The scientific guarantor of this publication is Honghan Gong. The authors of this manuscript declare no relationships with any companies, whose products or services may be related to the subject matter of the article. This study has received funding by the National Natural Science Foundations of China (81260217 and 81460263). One of the authors (Lei Gao) has significant statistical expertise. Institutional Review Board approval was obtained. Written informed consent was obtained from all subjects (patients) in this study. Methodology: retrospective, cross sectional study, performed at one institution.

References

  1. 1.
    Roozenbeek B, Maas AI, Menon DK (2013) Changing patterns in the epidemiology of traumatic brain injury. Nat Rev Neurol 9:231–236CrossRefPubMedGoogle Scholar
  2. 2.
    Faul MX, Wald L, Coronado MM. VG (2010) Traumatic brain injury in the United States: emergency department visits, hospitalizations and deaths 2002-2006. Atlanta Centers for Disease Control and Prevention. National Center for Injury Prevention and Control:1-71.Google Scholar
  3. 3.
    Chen AJ, D’Esposito M (2010) Traumatic brain injury: from bench to bedside to society. Neuron 66:11–14CrossRefPubMedGoogle Scholar
  4. 4.
    Scheid R, Walther K, Guthke T et al (2006) Cognitive sequelae of diffuse axonal injury. Arch Neurol 63:418–424CrossRefPubMedGoogle Scholar
  5. 5.
    Niogi SN, Mukherjee P, Ghajar J et al (2008) Extent of microstructural white matter injury in postconcussive syndrome correlates with impaired cognitive reaction time: a 3T diffusion tensor imaging study of mild traumatic brain injury. AJNR Am J Neuroradiol 29:967–973CrossRefPubMedGoogle Scholar
  6. 6.
    Rutgers DR, Fillard P, Paradot G et al (2008) Diffusion tensor imaging characteristics of the corpus callosum in mild, moderate, and severe traumatic brain injury. Am J Neuroradiol 29:1730–1735CrossRefPubMedGoogle Scholar
  7. 7.
    Bendlin BB, Ries ML, Lazar M et al (2008) Longitudinal changes in patients with traumatic brain injury assessed with diffusion-tensor and volumetric imaging. Neuroimage 42:503–514CrossRefPubMedPubMedCentralGoogle Scholar
  8. 8.
    Palacios EM, Sala-Llonch R, Junque C et al (2013) Long-term declarative memory deficits in diffuse TBI: correlations with cortical thickness, white matter integrity and hippocampal volume. Cortex 49:646–657CrossRefPubMedGoogle Scholar
  9. 9.
    Biswal B, Yetkin FZ, Haughton VM et al (1995) Functional connectivity in the motor cortex of resting human brain using echo-planar MRI. Magn Reson Med 34:537–541CrossRefPubMedGoogle Scholar
  10. 10.
    Stevens MC, Lovejoy D, Kim J et al (2012) Multiple resting state network functional connectivity abnormalities in mild traumatic brain injury. Brain Imaging Behav 6:293–318CrossRefPubMedGoogle Scholar
  11. 11.
    Pandit AS, Expert P, Lambiotte R et al (2013) Traumatic brain injury impairs small-world topology. Neurology 80:1826–1833CrossRefPubMedPubMedCentralGoogle Scholar
  12. 12.
    Palacios EM, Sala-Llonch R, Junque C et al (2013) Resting-state functional magnetic resonance imaging activity and connectivity and cognitive outcome in traumatic brain injury. JAMA Neurol 70:845–851CrossRefPubMedGoogle Scholar
  13. 13.
    Tyszka JM, Kennedy DP, Adolphs R et al (2011) Intact bilateral resting-state networks in the absence of the corpus callosum. J Neurosci 31:15154–15162CrossRefPubMedPubMedCentralGoogle Scholar
  14. 14.
    Zuo XN, Kelly C, Di Martino A et al (2010) Growing together and growing apart: regional and sex differences in the lifespan developmental trajectories of functional homotopy. J Neurosci 30:15034–15043CrossRefPubMedPubMedCentralGoogle Scholar
  15. 15.
    Adams JH, Doyle D, Ford I et al (1989) Diffuse axonal injury in head injury: definition, diagnosis and grading. Histopathology 15:49–59CrossRefPubMedGoogle Scholar
  16. 16.
    Teasdale G, Murray G, Parker L et al (1979) Adding up the Glasgow Coma Score. Acta Neurochir Suppl (Wien) 28:13–16Google Scholar
  17. 17.
    Folstein MF, Folstein SE, McHugh PR (1975) “Mini-mental state”. A practical method for grading the cognitive state of patients for the clinician. J Psychiatr Res 12:189–198CrossRefPubMedGoogle Scholar
  18. 18.
    Rappaport M, Hall KM, Hopkins K et al (1982) Disability rating scale for severe head trauma: coma to community. Arch Phys Med Rehabil 63:118–123PubMedGoogle Scholar
  19. 19.
    Beck AT, Steer RA, Carbin MG (1988) Psychometric properties of the Beck Depression Inventory: Twenty-five years of evaluation. Clin Psychol Rev 8:77–100CrossRefGoogle Scholar
  20. 20.
    Carr JH, Shepherd RB, Nordholm L et al (1985) Investigation of a new motor assessment scale for stroke patients. Phys Ther 65:175–180PubMedGoogle Scholar
  21. 21.
    Sparrow SS, Cicchetti DV (1985) Diagnostic uses of the Vineland Adaptive Behavior Scales. J Pediatr Psychol 10:215–225CrossRefPubMedGoogle Scholar
  22. 22.
    Hamilton M (1960) A rating scale for depression. J Neurol Neurosurg Psychiatry 23:56–62CrossRefPubMedPubMedCentralGoogle Scholar
  23. 23.
    Morris JC (1993) The Clinical Dementia Rating (CDR): current version and scoring rules. Neurology 43:2412–2414CrossRefPubMedGoogle Scholar
  24. 24.
    Nouri FM, Lincoln NB (1987) An extended activities of daily living scale for stroke patients. Clin Rehabil 1:301–305CrossRefGoogle Scholar
  25. 25.
    Ashburner J, Friston KJ (2005) Unified segmentation. Neuroimage 26:839–851CrossRefPubMedGoogle Scholar
  26. 26.
    Ashburner J (2007) A fast diffeomorphic image registration algorithm. Neuroimage 38:95–113CrossRefPubMedGoogle Scholar
  27. 27.
    Yan CG, Cheung B, Kelly C et al (2013) A comprehensive assessment of regional variation in the impact of head micromovements on functional connectomics. Neuroimage 76:183–201CrossRefPubMedPubMedCentralGoogle Scholar
  28. 28.
    Friston KJ, Williams S, Howard R et al (1996) Movement-related effects in fMRI time-series. Magn Reson Med 35:346–355CrossRefPubMedGoogle Scholar
  29. 29.
    Satterthwaite TD, Elliott MA, Gerraty RT et al (2013) An improved framework for confound regression and filtering for control of motion artifact in the preprocessing of resting-state functional connectivity data. Neuroimage 64:240–256CrossRefPubMedGoogle Scholar
  30. 30.
    Jenkinson M, Bannister P, Brady M et al (2002) Improved optimization for the robust and accurate linear registration and motion correction of brain images. Neuroimage 17:825–841CrossRefPubMedGoogle Scholar
  31. 31.
    Stark DE, Margulies DS, Shehzad ZE, et al (2008) Regional variation in interhemispheric coordination of intrinsic hemodynamic fluctuations. In: 13754-64Google Scholar
  32. 32.
    Werner C, Engelhard K (2007) Pathophysiology of traumatic brain injury. Br J Anaesth 99:4–9CrossRefPubMedGoogle Scholar
  33. 33.
    Seeley WW, Crawford RK, Zhou J et al (2009) Neurodegenerative diseases target large-scale human brain networks. Neuron 62:42–52CrossRefPubMedPubMedCentralGoogle Scholar
  34. 34.
    Kinnunen KM, Greenwood R, Powell JH et al (2011) White matter damage and cognitive impairment after traumatic brain injury. Brain 134:449–463CrossRefPubMedGoogle Scholar
  35. 35.
    Caeyenberghs K, Leemans A, Leunissen I et al (2014) Altered structural networks and executive deficits in traumatic brain injury patients. Brain Struct Funct 219:193–209CrossRefPubMedGoogle Scholar
  36. 36.
    Christodoulou C, DeLuca J, Ricker JH et al (2001) Functional magnetic resonance imaging of working memory impairment after traumatic brain injury. J Neurol Neurosurg Psychiatry 71:161–168CrossRefPubMedPubMedCentralGoogle Scholar
  37. 37.
    Nakayama N, Okumura A, Shinoda J et al (2006) Evidence for white matter disruption in traumatic brain injury without macroscopic lesions. J Neurol Neurosurg Psychiatry 77:850–855CrossRefPubMedPubMedCentralGoogle Scholar
  38. 38.
    Kurth F, Zilles K, Fox PT et al (2010) A link between the systems: functional differentiation and integration within the human insula revealed by meta-analysis. Brain Struct Funct 214:519–534CrossRefPubMedPubMedCentralGoogle Scholar
  39. 39.
    Tollard E, Galanaud D, Perlbarg V et al (2009) Experience of diffusion tensor imaging and 1H spectroscopy for outcome prediction in severe traumatic brain injury: preliminary results. Crit Care Med 37:1448–1455CrossRefPubMedGoogle Scholar
  40. 40.
    Seeley WW, Menon V, Schatzberg AF et al (2007) Dissociable intrinsic connectivity networks for salience processing and executive control. J Neurosci 27:2349–2356CrossRefPubMedPubMedCentralGoogle Scholar
  41. 41.
    Bonnelle V, Ham TE, Leech R et al (2012) Salience network integrity predicts default mode network function after traumatic brain injury. Proc Natl Acad Sci U S A 109:4690–4695CrossRefPubMedPubMedCentralGoogle Scholar
  42. 42.
    Sridharan D, Levitin DJ, Menon V (2008) A critical role for the right fronto-insular cortex in switching between central-executive and default-mode networks. Proc Natl Acad Sci U S A 105:12569–12574CrossRefPubMedPubMedCentralGoogle Scholar
  43. 43.
    Arenivas A, Diaz-Arrastia R, Spence J et al (2014) Three approaches to investigating functional compromise to the default mode network after traumatic axonal injury. Brain Imaging Behav 8:407–419CrossRefPubMedGoogle Scholar
  44. 44.
    Bonnelle V, Leech R, Kinnunen KM et al (2011) Default mode network connectivity predicts sustained attention deficits after traumatic brain injury. J Neurosci 31:13442–13451CrossRefPubMedGoogle Scholar
  45. 45.
    Ariza M, Serra-Grabulosa JM, Junque C et al (2006) Hippocampal head atrophy after traumatic brain injury. Neuropsychologia 44:1956–1961CrossRefPubMedGoogle Scholar
  46. 46.
    de la Plata CDM, Garces J, Kojori ES et al (2011) Deficits in functional connectivity of hippocampal and frontal lobe circuits after traumatic axonal injury. Arch Neurol 68:74–84Google Scholar
  47. 47.
    Slobounov SM, Gay M, Zhang K et al (2011) Alteration of brain functional network at rest and in response to YMCA physical stress test in concussed athletes: RsFMRI study. Neuroimage 55:1716–1727CrossRefPubMedPubMedCentralGoogle Scholar
  48. 48.
    Dal Monte O, Schintu S, Pardini M et al (2014) The left inferior frontal gyrus is crucial for reading the mind in the eyes: brain lesion evidence. Cortex 58:9–17CrossRefPubMedGoogle Scholar
  49. 49.
    McDonald S, Flanagan S (2004) Social perception deficits after traumatic brain injury: interaction between emotion recognition, mentalizing ability, and social communication. Neuropsychology 18:572–579CrossRefPubMedGoogle Scholar
  50. 50.
    Witt ST, Lovejoy DW, Pearlson GD et al (2010) Decreased prefrontal cortex activity in mild traumatic brain injury during performance of an auditory oddball task. Brain Imaging Behav 4:232–247CrossRefPubMedGoogle Scholar
  51. 51.
    Little DM, Kraus MF, Joseph J et al (2010) Thalamic integrity underlies executive dysfunction in traumatic brain injury. Neurology 74:558–564CrossRefPubMedPubMedCentralGoogle Scholar
  52. 52.
    Garcia-Panach J, Lull N, Lull JJ et al (2011) A voxel-based analysis of FDG-PET in traumatic brain injury: regional metabolism and relationship between the thalamus and cortical areas. J Neurotrauma 28:1707–1717CrossRefPubMedGoogle Scholar
  53. 53.
    Gale SD, Baxter L, Roundy N et al (2005) Traumatic brain injury and grey matter concentration: a preliminary voxel based morphometry study. J Neurol Neurosurg Psychiatry 76:984–988CrossRefPubMedPubMedCentralGoogle Scholar
  54. 54.
    Jones DT, Mateen FJ, Lucchinetti CF et al (2011) Default mode network disruption secondary to a lesion in the anterior thalamus. Arch Neurol 68:242–247CrossRefPubMedGoogle Scholar
  55. 55.
    Tang L, Ge Y, Sodickson DK et al (2011) Thalamic resting-state functional networks: disruption in patients with mild traumatic brain injury. Radiology 260:831–840CrossRefPubMedPubMedCentralGoogle Scholar
  56. 56.
    Grossman EJ, Inglese M (2016) The Role of Thalamic Damage in Mild Traumatic Brain Injury. J Neurotrauma 33:163–167CrossRefPubMedGoogle Scholar
  57. 57.
    Marchand WR, Lee JN, Suchy Y et al (2012) Aberrant functional connectivity of cortico-basal ganglia circuits in major depression. Neurosci Lett 514:86–90CrossRefPubMedGoogle Scholar
  58. 58.
    Gazzaniga MS (2000) Cerebral specialization and interhemispheric communication. Brain 123:1293–1326CrossRefPubMedGoogle Scholar
  59. 59.
    Quigley M, Cordes D, Turski P et al (2003) Role of the corpus callosum in functional connectivity. Am J Neuroradiol 24:208–212PubMedGoogle Scholar
  60. 60.
    Treble A, Hasan KM, Iftikhar A et al (2013) Working memory and corpus callosum microstructural integrity after pediatric traumatic brain injury: a diffusion tensor tractography study. J Neurotrauma 30:1609–1619CrossRefPubMedPubMedCentralGoogle Scholar
  61. 61.
    Arenth PM, Russell KC, Scanlon JM et al (2014) Corpus callosum integrity and neuropsychological performance after traumatic brain injury: a diffusion tensor imaging study. J Head Trauma Rehabil 29:E1–E10CrossRefPubMedPubMedCentralGoogle Scholar
  62. 62.
    Uddin LQ, Mooshagian E, Zaidel E et al (2008) Residual functional connectivity in the split-brain revealed with resting-state functional MRI. Neuroreport 19:703–709CrossRefPubMedPubMedCentralGoogle Scholar
  63. 63.
    Saindane AM, Law M, Ge Y et al (2007) Correlation of diffusion tensor and dynamic perfusion MR imaging metrics in normal-appearing corpus callosum: support for primary hypoperfusion in multiple sclerosis. AJNR Am J Neuroradiol 28:767–772PubMedGoogle Scholar
  64. 64.
    Hubbard NA, Turner M, Hutchison JL et al (2015) Multiple sclerosis-related white matter microstructural change alters the BOLD hemodynamic response. J Cereb Blood Flow MetabGoogle Scholar

Copyright information

© European Society of Radiology 2016

Authors and Affiliations

  • Jian Li
    • 1
  • Lei Gao
    • 1
  • Kai Xie
    • 1
  • Jie Zhan
    • 1
  • Xiaoping Luo
    • 1
  • Huifang Wang
    • 1
  • Huifang Zhang
    • 1
  • Jing Zhao
    • 1
  • Fuqing Zhou
    • 1
  • Xianjun Zeng
    • 1
  • Laichang He
    • 1
  • Yulin He
    • 1
  • Honghan Gong
    • 1
  1. 1.Department of Radiology, The First Affiliated HospitalNanchang UniversityNanchang CityChina

Personalised recommendations