Advertisement

European Radiology

, Volume 26, Issue 11, pp 3923–3931 | Cite as

Morphological imaging and T2 and T2* mapping of hip cartilage at 7 Tesla MRI under the influence of intravenous gadolinium

  • Andrea Lazik-PalmEmail author
  • Oliver Kraff
  • Christina Geis
  • Sören Johst
  • Juliane Goebel
  • Mark E. Ladd
  • Harald H. Quick
  • Jens M. Theysohn
Musculoskeletal

Abstract

Objectives

To investigate the influence of intravenous gadolinium on cartilage T2 and T2* relaxation times and on morphological image quality at 7-T hip MRI.

Methods

Hips of 11 healthy volunteers were examined at 7 T. Multi-echo sequences for T2 and T2* mapping, 3D T1 volumetric interpolated breath-hold examination (VIBE) and double-echo steady-state (DESS) sequences were acquired before and after intravenous application of gadolinium according to a delayed gadolinium-enhanced MRI of cartilage (dGEMRIC) protocol. Cartilage relaxation times were measured in both scans. Morphological sequences were assessed quantitatively using contrast ratios and qualitatively using a 4-point Likert scale. Student’s t-test, Pearson’s correlation (ρ) and Wilcoxon sign-rank test were used for statistical comparisons.

Results

Pre- and post-contrast T2 and T2* values were highly correlated (T2: acetabular: ρ = 0.76, femoral: ρ = 0.77; T2*: acetabular: ρ = 0.80, femoral: ρ = 0.72). Gadolinium enhanced contrasts between cartilage and joint fluid in DESS and T1 VIBE according to the qualitative (p = 0.01) and quantitative (p < 0.001) analysis. The delineation of acetabular and femoral cartilage and the labrum predominantly improved with gadolinium.

Conclusions

Gadolinium showed no relevant influence on T2 or T2* relaxation times and improved morphological image quality at 7 T. Therefore, morphological and quantitative sequences including dGEMRIC can be conducted in a one-stop-shop examination.

Key Points

Hip cartilage T2 values correlate highly before and after gadolinium at 7 T

Hip cartilage T2* values correlate highly before and after enhancement at 7 T

Morphological hip cartilage imaging benefits from intravenous gadolinium at 7 T

The delineation of acetabular and femoral cartilage can be improved by gadolinium

Morphological and quantitative sequences including dGEMRIC can be combined as a one-stop-shop examination

Keywords

Ultra-high-field MRI Hip cartilage dGEMRIC T2 mapping T2* mapping 

Abbreviations

MRI

Magnetic resonance imaging

T

Tesla

SD

Standard deviation

BMI

Body mass index

RF

Radio frequency

FLASH

Fast low-angle shot

DREAM

Dual refocusing echo acquisition mode

FOV

Field of view

TE

Echo time

TR

Repetition time

DESS

Double-echo steady state

VIBE

Volumetric interpolated breath-hold examination

dGEMRIC

Delayed gadolinium-enhanced MRI of cartilage

ROI

Region of interest

CR

Contrast ratio

SSFP

Steady-state free precession

FISP

Fast imaging steady precession

Notes

Acknowledgments

The authors thank Desmond Tse (Maastricht University, The Netherlands) for providing the source code of the DREAM sequence.

This work was supported by a research grant (“IFORES”) from the University Duisburg-Essen, Germany, awarded to the first author. Different results of the same study population have already been published in “7 Tesla quantitative hip MRI: T1, T2 and T2* mapping of hip cartilage in healthy volunteers” (Lazik A et al., Eur Radiol. 2015 Aug 28. DOI 10.1007/s00330-015-3964-0).

The scientific guarantor of this publication is Dr. med. Andrea Lazik-Palm. The authors of this manuscript declare no relationships with any companies, whose products or services may be related to the subject matter of the article. No complex statistical methods were necessary for this paper.

Institutional Review Board approval was obtained. Written informed consent was obtained from all subjects (patients) in this study. Methodology: prospective, experimental, performed at one institution.

References

  1. 1.
    Binks DA, Hodgson RJ, Ries ME et al (2013) Quantitative parametric MRI of articular cartilage: a review of progress and open challenges. Br J Radiol 86:20120163CrossRefPubMedPubMedCentralGoogle Scholar
  2. 2.
    Rogers AD, Payne JE, Yu JS (2013) Cartilage imaging: a review of current concepts and emerging technologies. Semin Roentgenol 48:148–157CrossRefPubMedGoogle Scholar
  3. 3.
    Bashir A, Gray ML, Burstein D (1996) Gd-DTPA2- as a measure of cartilage degradation. Magn Reson Med 36:665–673CrossRefPubMedGoogle Scholar
  4. 4.
    Liess C, Lusse S, Karger N, Heller M, Gluer CC (2002) Detection of changes in cartilage water content using MRI T2-mapping in vivo. Osteoarthr Cartil 10:907–913CrossRefPubMedGoogle Scholar
  5. 5.
    Gold SL, Burge AJ, Potter HG (2012) MRI of hip cartilage: joint morphology, structure, and composition. Clin Orthop Relat Res 470:3321–3331CrossRefPubMedPubMedCentralGoogle Scholar
  6. 6.
    Nieminen MT, Nissi MJ, Mattila L, Kiviranta I (2012) Evaluation of chondral repair using quantitative MRI. J Magn Reson Imaging 36:1287–1299CrossRefPubMedGoogle Scholar
  7. 7.
    Burstein D, Velyvis J, Scott KT et al (2001) Protocol issues for delayed Gd(DTPA)(2-)-enhanced MRI (dGEMRIC) for clinical evaluation of articular cartilage. Magn Reson Med 45:36–41CrossRefPubMedGoogle Scholar
  8. 8.
    Morrison WB (2005) Indirect MR arthrography: concepts and controversies. Semin Musculoskelet Radiol 9:125–134CrossRefPubMedGoogle Scholar
  9. 9.
    Petchprapa CN, Rybak LD, Dunham KS, Lattanzi R, Recht MP (2015) Labral and cartilage abnormalities in young patients with hip pain: accuracy of 3-Tesla indirect MR arthrography. Skelet Radiol 44:97–105CrossRefGoogle Scholar
  10. 10.
    Kijowski R (2010) Clinical cartilage imaging of the knee and hip joints. AJR Am J Roentgenol 195:618–628CrossRefPubMedGoogle Scholar
  11. 11.
    Krug R, Stehling C, Kelley DA, Majumdar S, Link TM (2009) Imaging of the musculoskeletal system in vivo using ultra-high field magnetic resonance at 7 T. Investig Radiol 44:613–618CrossRefGoogle Scholar
  12. 12.
    Chang G, Deniz CM, Honig S et al (2014) MRI of the hip at 7T: feasibility of bone microarchitecture, high-resolution cartilage, and clinical imaging. J Magn Reson Imaging 39:1384–1393CrossRefPubMedGoogle Scholar
  13. 13.
    Ellermann J, Goerke U, Morgan P et al (2012) Simultaneous bilateral hip joint imaging at 7 Tesla using fast transmit B(1) shimming methods and multichannel transmission - a feasibility study. NMR Biomed 25:1202–1208CrossRefPubMedPubMedCentralGoogle Scholar
  14. 14.
    Theysohn JM, Kraff O, Orzada S et al (2013) Bilateral hip imaging at 7 Tesla using a multi-channel transmit technology: initial results presenting anatomical detail in healthy volunteers and pathological changes in patients with avascular necrosis of the femoral head. Skelet Radiol 42:1555–1563CrossRefGoogle Scholar
  15. 15.
    Theysohn JM, Kraff O, Theysohn N et al (2014) Hip imaging of avascular necrosis at 7 Tesla compared with 3 Tesla. Skelet Radiol 43:623–632CrossRefGoogle Scholar
  16. 16.
    Lazik A, Theysohn JM, Geis C et al (2015) 7 Tesla quantitative hip MRI: T1, T2 and T2* mapping of hip cartilage in healthy volunteers. Eur Radiol. doi: 10.1007/s00330-015-3964-0 PubMedGoogle Scholar
  17. 17.
    Nissi MJ, Mortazavi S, Hughes J, Morgan P, Ellermann J (2015) T2* relaxation time of acetabular and femoral cartilage with and without intraarticular gadopentetate dimeglumine in patients with femoroacetabular impingement. AJR Am J Roentgenol 204:W695–W700CrossRefPubMedPubMedCentralGoogle Scholar
  18. 18.
    Verschueren J, Tiel J, Reijman M et al (2014) T2 relaxation times of knee articular cartilage in osteoarthritis patients are not influenced by gadolinium contrast agent. Radiological Society of North America 2014 Scientific Assembly and Annual Meeting, ChicagoGoogle Scholar
  19. 19.
    Fries P, Morelli JN, Lux F, Tillement O, Schneider G, Buecker A (2014) The issues and tentative solutions for contrast-enhanced magnetic resonance imaging at ultra-high field strength. Wiley Interdiscip Rev Nanomed Nanobiotechnol 6:559–573CrossRefPubMedGoogle Scholar
  20. 20.
    Kalavagunta C, Michaeli S, Metzger GJ (2014) In vitro Gd-DTPA relaxometry studies in oxygenated venous human blood and aqueous solution at 3 and 7 T. Contrast Media Mol Imaging 9:169–176CrossRefPubMedPubMedCentralGoogle Scholar
  21. 21.
    Noebauer-Huhmann IM, Szomolanyi P, Juras V, Kraff O, Ladd ME, Trattnig S (2010) Gadolinium-based magnetic resonance contrast agents at 7 Tesla: in vitro T1 relaxivities in human blood plasma. Investig Radiol 45:554–558CrossRefGoogle Scholar
  22. 22.
    Orzada S, Quick HH, Ladd ME et al (2009) A flexible 8-channel transmit/receive body coil for 7 T human imaging. Proc Intl Soc Mag Reson Med 17, Hawaii, USA, pp 2999Google Scholar
  23. 23.
    Nehrke K, Bornert P (2012) DREAM—a novel approach for robust, ultrafast, multislice B(1) mapping. Magn Reson Med 68:1517–1526CrossRefPubMedGoogle Scholar
  24. 24.
    Kraff O, Lazik A, Brenner D et al (2015) In vivo comparison of B1 mapping techniques for hip joint imaging at 7 Tesla. Proc Intl Soc Mag Reson Med 23, Toronto, CanadaGoogle Scholar
  25. 25.
    Bland JM, Altman DG (1986) Statistical methods for assessing agreement between two methods of clinical measurement. Lancet 1:307–310CrossRefPubMedGoogle Scholar
  26. 26.
    Mortazavi S, Nissi M, Hughes J, Morgan P, Ellermann J (2014) T2* relaxation time of acetabular and femoral cartilage with and without intra-articular Gd-DTPA2- in hip FAI patients. Radiological Society of North America 2014 Scientific Assembly and Annual Meeting, ChicagoGoogle Scholar
  27. 27.
    Nieminen MT, Menezes NM, Williams A, Burstein D (2004) T2 of articular cartilage in the presence of Gd-DTPA2. Magn Reson Med 51:1147–1152CrossRefPubMedGoogle Scholar
  28. 28.
    Kurkijarvi JE, Nissi MJ, Rieppo J et al (2008) The zonal architecture of human articular cartilage described by T2 relaxation time in the presence of Gd-DTPA2. Magn Reson Imaging 26:602–607CrossRefPubMedGoogle Scholar
  29. 29.
    May DA, Pennington DJ (2000) Effect of gadolinium concentration on renal signal intensity: An in vitro study with a saline bag model. Radiology 216:232–236CrossRefPubMedGoogle Scholar
  30. 30.
    Sutter R, Zubler V, Hoffmann A et al (2014) Hip MRI: how useful is intraarticular contrast material for evaluating surgically proven lesions of the labrum and articular cartilage? AJR Am J Roentgenol 202:160–169CrossRefPubMedGoogle Scholar
  31. 31.
    Vahlensieck M, Peterfy CG, Wischer T et al (1996) Indirect MR arthrography: optimization and clinical applications. Radiology 200:249–254CrossRefPubMedGoogle Scholar
  32. 32.
    Vahlensieck M, Sommer T, Textor J et al (1998) Indirect MR arthrography: techniques and applications. Eur Radiol 8:232–235CrossRefPubMedGoogle Scholar
  33. 33.
    Peterfy CG, Schneider E, Nevitt M (2008) The osteoarthritis initiative: report on the design rationale for the magnetic resonance imaging protocol for the knee. Osteoarthr Cartil 16:1433–1441CrossRefPubMedPubMedCentralGoogle Scholar
  34. 34.
    Lee MJ, Motamedi K, Chow K, Seeger LL (2008) Gradient-recalled echo sequences in direct shoulder MR arthrography for evaluating the labrum. Skelet Radiol 37:19–25CrossRefGoogle Scholar
  35. 35.
    Schmitt R, Christopoulos G, Meier R et al (2003) Direct MR arthrography of the wrist in comparison with arthroscopy: a prospective study on 125 patients. Röfo 175:911–919PubMedGoogle Scholar
  36. 36.
    Juras V, Bohndorf K, Heule R et al (2015) A comparison of multi-echo spin-echo and triple-echo steady-state T2 mapping for in vivo evaluation of articular cartilage. Eur Radiol. doi: 10.1007/s00330-015-3979-6 PubMedCentralGoogle Scholar
  37. 37.
    Paunipagar BK, Rasalkar D (2014) Imaging of articular cartilage. Indian J Radiol Imaging 24:237–248CrossRefPubMedPubMedCentralGoogle Scholar
  38. 38.
    Roemer FW, Kwoh CK, Hannon MJ et al (2011) Semiquantitative assessment of focal cartilage damage at 3T MRI: a comparative study of dual echo at steady state (DESS) and intermediate-weighted (IW) fat suppressed fast spin echo sequences. Eur J Radiol 80:e126–e131CrossRefPubMedGoogle Scholar
  39. 39.
    Schmitt B, Zbyn S, Stelzeneder D et al (2011) Cartilage quality assessment by using glycosaminoglycan chemical exchange saturation transfer and (23)Na MR imaging at 7 T. Radiology 260:257–264CrossRefPubMedGoogle Scholar
  40. 40.
    Raya JG, Dettmann E, Notohamiprodjo M, Krasnokutsky S, Abramson S, Glaser C (2014) Feasibility of in vivo diffusion tensor imaging of articular cartilage with coverage of all cartilage regions. Eur Radiol 24:1700–1706CrossRefPubMedGoogle Scholar
  41. 41.
    Zbyn S, Mlynarik V, Juras V, Szomolanyi P, Trattnig S (2015) Evaluation of cartilage repair and osteoarthritis with sodium MRI. NMR Biomed. doi: 10.1002/nbm.3280 Google Scholar
  42. 42.
    Rehnitz C, Kupfer J, Streich NA et al (2014) Comparison of biochemical cartilage imaging techniques at 3 T MRI. Osteoarthr Cartil 22:1732–1742CrossRefPubMedGoogle Scholar

Copyright information

© European Society of Radiology 2016

Authors and Affiliations

  • Andrea Lazik-Palm
    • 1
    Email author
  • Oliver Kraff
    • 2
  • Christina Geis
    • 1
  • Sören Johst
    • 2
  • Juliane Goebel
    • 1
  • Mark E. Ladd
    • 1
    • 2
    • 3
  • Harald H. Quick
    • 2
    • 4
  • Jens M. Theysohn
    • 1
  1. 1.Department of Diagnostic and Interventional Radiology and NeuroradiologyUniversity Hospital EssenEssenGermany
  2. 2.Erwin L. Hahn Institute for Magnetic Resonance ImagingUniversity of Duisburg-EssenEssenGermany
  3. 3.Division of Medical Physics in RadiologyGerman Cancer Research Center (DKFZ)HeidelbergGermany
  4. 4.High-Field and Hybrid MR ImagingUniversity Hospital EssenEssenGermany

Personalised recommendations