Advertisement

European Radiology

, Volume 26, Issue 10, pp 3534–3541 | Cite as

PET/MRI of central nervous system: current status and future perspective

  • Zhen Lu Yang
  • Long Jiang Zhang
Nuclear Medicine

Abstract

Imaging plays an increasingly important role in the early diagnosis, prognosis prediction and therapy response evaluation of central nervous system (CNS) diseases. The newly emerging hybrid positron emission tomography/magnetic resonance imaging (PET/MRI) can perform “one-stop-shop” evaluation, including anatomic, functional, biochemical and metabolic information, even at the molecular level, for personalised diagnoses and treatments of CNS diseases. However, there are still several problems to be resolved, such as appropriate PET detectors, attenuation correction and so on. This review will introduce the basic physical principles of PET/MRI and its potential clinical applications in the CNS. We also provide the future perspectives for this field.

Key Points

PET/MRI can simultaneously provide anatomic, functional, biochemical and metabolic information.

PET/MRI has promising potential in various central nervous system diseases.

Research on the future implementation of PET/MRI is challenging and encouraging.

Keywords

PET/MRI Neurodegenerative diseases Brain tumour Epilepsy Stroke 

Abbreviations

AD

Alzheimer’s disease

CNS

Central nervous system

MRI

Magnetic resonance imaging

PET

Positron emission tomography

PET/CT

Positron emission tomography/computed tomography

PET/MRI

Positron emission tomography/magnetic resonance imaging

SUVs

Standard uptake values

Notes

Acknowledgments

The scientific guarantor of this publication is Long Jiang Zhang. The authors of this manuscript declare relationships with the following companies: UJS is a consultant for and receives research support from Bayer, Bracco, GE, Medrad and Siemens. The other authors have no conflicts of interest to declare. This study was supported by grants from the National Natural Science Foundation of China (grant nos. 81322020, 81230032 and 81171313 to L.J.Z.) and the Program for New Century Excellent Talents in the University (NCET-12-0260 to L.J.Z.). No complex statistical methods were necessary for this paper. Institutional Review Board approval was not obtained because this is a review paper. Written informed consent was not obtained because this is a review paper.

None of the study subjects or cohorts have been previously reported.

Methodology: performed at one institution.

References

  1. 1.
    Global Burden of Disease Study 2013 Collaborators (2015) Global, regional, and national incidence, prevalence, and years lived with disability for 301 acute and chronic diseases and injuries in 188 countries, 1990-2013: a systematic analysis for the Global Burden of Disease Study 2013. Lancet 386:743–800CrossRefPubMedCentralGoogle Scholar
  2. 2.
    Jadvar H, Colletti PM (2014) Competitive advantage of PET/MRI. Eur J Radiol 83:84–94CrossRefPubMedGoogle Scholar
  3. 3.
    Littooij AS, Torigian DA, Kwee TC et al (2013) Potential clinical applications of PET/magnetic resonance imaging. PET Clin 8:367–384CrossRefPubMedGoogle Scholar
  4. 4.
    Kierans A, Parikh N, Chandarana H (2015) Recent advances in MR hardware and software. Radiol Clin North Am 53:599–610CrossRefPubMedGoogle Scholar
  5. 5.
    Veit-Haibach P, Kuhn FP, Wiesinger F et al (2013) PET-MR imaging using a tri-modality PET/CT-MR system with a dedicated shuttle in clinical routine. MAGMA 26:25–35CrossRefPubMedGoogle Scholar
  6. 6.
    Wehner J, Weissler B, Dueppenbecker P et al (2014) PET/MRI insert using digital SiPMs: investigation of MR-compatibility. Nucl Inst Methods Phys Res A 734:116–121CrossRefGoogle Scholar
  7. 7.
    Rakheja R, Chandarana H, Ponzo F et al (2014) Fluorodeoxyglucose positron emission tomography/magnetic resonance imaging: current status, future aspects. PET Clin 9:237–252CrossRefPubMedGoogle Scholar
  8. 8.
    Herzog H, Pietrzyk U, Shah NJ et al (2010) The current state, challenges and perspectives of MR-PET. NeuroImage 49:2072–2082CrossRefPubMedGoogle Scholar
  9. 9.
    Yoon HS, Ko GB, Kwon SI et al (2012) Initial results of simultaneous PET/MRI experiments with an MRI-compatible silicon photomultiplier PET scanner. J Nucl Med 53:608–614CrossRefPubMedGoogle Scholar
  10. 10.
    Keereman V, Van Holen R, Vandenberghe S et al (2013) Temperature dependence of APD-based PET scanners. Med Phys 40:092506CrossRefPubMedGoogle Scholar
  11. 11.
    Kim H, Chen CT, Eclov N et al (2015) A feasibility study of a PET/MRI insert detector using strip-line and waveform sampling data acquisition. Nucl Inst Methods Phys Res A 784:557–564CrossRefGoogle Scholar
  12. 12.
    Barnwell J, Raptis CA, McConathy JE et al (2015) Beyond whole-body imaging advanced imaging techniques of PET/MRI. Clin Nucl Med 40:e88–e95CrossRefPubMedGoogle Scholar
  13. 13.
    Paulus DH, Quick HH, Geppert C et al (2015) Whole-body PET/MR imaging: quantitative evaluation of a novel model-based MR attenuation correction method including bone. J Nucl Med 56:1061–1066CrossRefPubMedPubMedCentralGoogle Scholar
  14. 14.
    Partovi S, Kohan A, Rubbert C et al (2014) Clinical oncologic applications of PET/MRI: a new horizon. Am J Nucl Med Mol Imaging 4:202–212PubMedPubMedCentralGoogle Scholar
  15. 15.
    Werner P, Barthel H, Drzezga A et al (2015) Current status and future role of brain PET/MRI in clinical and research settings. Eur J Nucl Med Mol Imaging 42:512–526CrossRefPubMedGoogle Scholar
  16. 16.
    Aasheim LB, Karlberg A, Goa PE et al (2015) PET/MR brain imaging: evaluation of clinical UTE-based attenuation correction. Eur J Nucl Med Mol Imaging 42:1439–1446CrossRefPubMedGoogle Scholar
  17. 17.
    Cabello J, Lukas M, Förster S et al (2015) MR-based attenuation correction using ultrashort-echo-time pulse sequences in dementia patients. J Nucl Med 56:423–429CrossRefPubMedGoogle Scholar
  18. 18.
    Manber R, Thielemans K, Hutton BF et al (2015) Practical PET respiratory motion correction in clinical PET/MR. J Nucl Med 56:890–896CrossRefPubMedGoogle Scholar
  19. 19.
    Leemans EL, Kotasidis F, Wissmeyer M et al (2015) Qualitative and quantitative evaluation of blob-based time-of-flight PET image reconstruction in hybrid brain PET/MR imaging. Mol Imaging Biol 17:704–713CrossRefPubMedPubMedCentralGoogle Scholar
  20. 20.
    Barthel H, Schroeter ML, Hoffmann KT et al (2015) PET/MR in dementia and other neurodegenerative diseases. Semin Nucl Med 45:224–233CrossRefPubMedGoogle Scholar
  21. 21.
    Bhogal P, Mahoney C, Graeme-Baker S et al (2013) The common dementias: a pictorial review. Eur Radiol 23:3405–3417CrossRefPubMedGoogle Scholar
  22. 22.
    Rocchi L, Niccolini F, Politis M et al (2015) Recent imaging advances in neurology. J Neurol 262:2182–2194CrossRefPubMedGoogle Scholar
  23. 23.
    Barthel H, Gertz HJ, Dresel S et al (2011) Cerebral amyloid-β PET with florbetaben (18F) in patients with Alzheimer's disease and healthy controls: a multicentre phase 2 diagnostic study. Lancet Neurol 10:424–435CrossRefPubMedGoogle Scholar
  24. 24.
    Yousefi BH, Manook A, Grimmer T et al (2015) Characterization and first human investigation of FIBT, a novel fluorinated Abeta plaque neuroimaging PET radioligand. ACS Chem Neurosci 6:428–437CrossRefPubMedGoogle Scholar
  25. 25.
    Barkhof F, Haller S, Rombouts SA (2014) Resting-state functional MR imaging: a new window to the brain. Radiology 272:29–49CrossRefPubMedGoogle Scholar
  26. 26.
    Cui Y, Jiao Y, Chen HJ et al (2015) Aberrant functional connectivity of default-mode network in type 2 diabetes patients. Eur Radiol 25:3238–3246CrossRefPubMedPubMedCentralGoogle Scholar
  27. 27.
    Zhang LJ, Wen J, Liang X et al (2015) Brain default mode network changes after renal transplantation: a diffusion-tensor imaging and resting-state functional MR imaging study. RadiologyGoogle Scholar
  28. 28.
    Luo S, Qi RF, Wen JQ et al (2016) Abnormal intrinsic brain activity patterns in patients with end-stage renal disease undergoing peritoneal dialysis: a resting-state functional MR imaging study. Radiology 278:181–189Google Scholar
  29. 29.
    Ni L, Wen J, Zhang LJ et al (2014) Aberrant default-mode functional connectivity in patients with end-stage renal disease: a resting-state functional MR imaging study. Radiology 271:543–552CrossRefPubMedGoogle Scholar
  30. 30.
    Celebi O, Uzdogan A, Oguz KK et al (2016) Default mode network connectivity is linked to cognitive functioning and CSF Aβ1-42 levels in Alzheimer's disease. Arch Gerontol Geriatr 62:125–132CrossRefPubMedGoogle Scholar
  31. 31.
    Wang P, Zhou B, Yao H et al (2015) Aberrant intra- and inter-network connectivity architectures in Alzheimer's disease and mild cognitive impairment. Sci Rep 5:14824CrossRefPubMedPubMedCentralGoogle Scholar
  32. 32.
    Verclytte S, Lopes R, Delmaire C et al (2015) Optimization of brain perfusion image quality by cortical surface-based projection of arterial spin labeling maps in early-onset Alzheimer's disease patients. Eur Radiol 25:2479–2484CrossRefPubMedGoogle Scholar
  33. 33.
    Wang R, Yu S, Alger JR et al (2014) Multi-delay arterial spin labeling perfusion MRI in moyamoya disease--comparison with CT perfusion imaging. Eur Radiol 24:1135–1144CrossRefPubMedPubMedCentralGoogle Scholar
  34. 34.
    Binnewijzend MA, Benedictus MR, Kuijer JP et al (2015) Cerebral perfusion in the predementia stages of Alzheimer's disease. Eur RadiolGoogle Scholar
  35. 35.
    Binnewijzend MA, Kuijer JP, Benedictus MR et al (2013) Cerebral blood flow measured with 3D pseudocontinuous arterial spin-labeling MR imaging in Alzheimer disease and mild cognitive impairment: a marker for disease severity. Radiology 267:221–230CrossRefPubMedGoogle Scholar
  36. 36.
    Binnewijzend MA, Kuijer JP, van der Flier WM et al (2014) Distinct perfusion patterns in Alzheimer's disease, frontotemporal dementia and dementia with Lewy bodies. Eur Radiol 24:2326–2333CrossRefPubMedGoogle Scholar
  37. 37.
    Verfaillie SC, Adriaanse SM, Binnewijzend MA et al (2015) Cerebral perfusion and glucose metabolism in Alzheimer's disease and frontotemporal dementia: two sides of the same coin? Eur Radiol 25:3050–3059CrossRefPubMedPubMedCentralGoogle Scholar
  38. 38.
    Steketee RM, Bron EE, Meijboom R et al (2016) Early-stage differentiation between presenile Alzheimer's disease and frontotemporal dementia using arterial spin labeling MRI. Eur Radiol 26:244–253CrossRefPubMedGoogle Scholar
  39. 39.
    Tahmasian M, Pasquini L, Scherr M et al (2015) The lower hippocampus global connectivity, the higher its local metabolism in Alzheimer disease. Neurology 84:1956–1963CrossRefPubMedGoogle Scholar
  40. 40.
    Kim E, Howes OD, Kapur S (2013) Molecular imaging as a guide for the treatment of central nervous system disorders. Dialogues Clin Neurosci 15:315–328PubMedPubMedCentralGoogle Scholar
  41. 41.
    Pavese N, Simpson BS, Metta V et al (2012) [18F]FDOPA uptake in the raphe nuclei complex reflects serotonin transporter availability. A combined [18F]FDOPA and [11C]DASB PET study in Parkinson's disease. NeuroImage 59:1080–1084CrossRefPubMedGoogle Scholar
  42. 42.
    Pavese N, Metta V, Bose SK et al (2010) Fatigue in Parkinson's disease is linked to striatal and limbic serotonergic dysfunction. Brain 133:3434–3443CrossRefPubMedGoogle Scholar
  43. 43.
    Calabresi P, Picconi B, Tozzi A et al (2016) Interaction between basal ganglia and limbic circuits in learning and memory processes. Parkinsonism Relat Disord 22:S65–S68CrossRefPubMedGoogle Scholar
  44. 44.
    Lee KD, Koo JH, Song SH et al (2015) Central cholinergic dysfunction could be associated with oropharyngeal dysphagia in early Parkinson's disease. J Neural Transm (Vienna) 122:1553–1561CrossRefGoogle Scholar
  45. 45.
    Georgiev D, Jahanshahi M, Dreo J et al (2015) Dopaminergic medication alters auditory distractor processing in Parkinson's disease. Acta Psychol (Amst) 156:45–56CrossRefGoogle Scholar
  46. 46.
    Ding W, Ding LJ, Li FF et al (2015) Neurodegeneration and cognition in Parkinson's disease: a review. Eur Rev Med Pharmacol Sci 19:2275–2281PubMedGoogle Scholar
  47. 47.
    Hellwig S, Frings L, Amtage F et al (2015) 18F-FDG PET is an early predictor of overall survival in suspected atypical parkinsonism. J Nucl Med 56:1541–1546CrossRefPubMedGoogle Scholar
  48. 48.
    Kimura M, Da Cruz LC Jr (2016) Multiparametric MR imaging in the assessment of brain tumors. Magn Reson Imaging Clin N Am 24:87–122CrossRefPubMedGoogle Scholar
  49. 49.
    Bailey PD, Zacà D, Basha MM et al (2015) Presurgical fMRI and DTI for the prediction of perioperative motor and language deficits in primary or metastatic brain lesions. J Neuroimaging 25:776–784CrossRefPubMedGoogle Scholar
  50. 50.
    Neuner I, Kaffanke JB, Langen KJ et al (2012) Multimodal imaging utilising integrated MR-PET for human brain tumour assessment. Eur Radiol 22:2568–2580CrossRefPubMedGoogle Scholar
  51. 51.
    Senthamizhchelvan S, Zaidi H (2013) Novel quantitative techniques in hybrid (PET-MR) imaging of brain tumors. PET Clin 8:219–232CrossRefPubMedGoogle Scholar
  52. 52.
    Thorwarth D, Müller AC, Pfannenberg C et al (2013) Combined PET/MRimaging using (68)Ga-DOTATOC for radiotherapy treatment planning in meningioma patients. Recent Results Cancer Res 194:425–439CrossRefPubMedGoogle Scholar
  53. 53.
    Ishiyama M, Richards T, Parvathaneni U et al (2015) Dynamic contrast-enhanced magnetic resonance imaging in head and neck cancer: differentiation of new H&N cancer, recurrent disease, and benign post-treatment changes. Clin Imaging 39:566–570CrossRefPubMedGoogle Scholar
  54. 54.
    Varoquaux A, Rager O, Dulguerov P et al (2015) Diffusion-weighted and PET/MR imaging after radiation therapy for malignant head and neck tumors. Radiographics 35:1502–1527CrossRefPubMedGoogle Scholar
  55. 55.
    Yoon JH, Kim JH, Kang WJ et al (2014) Grading of cerebral glioma with multiparametric MR imaging and 18F-FDG-PET: concordance and accuracy. Eur Radiol 24:380–389CrossRefPubMedGoogle Scholar
  56. 56.
    Dunet V, Maeder P, Nicod-Lalonde M et al (2014) Combination of MRI and dynamic FET PET for initial glioma grading. Nuklearmedizin 53:155–161CrossRefPubMedGoogle Scholar
  57. 57.
    Barajas RF Jr, Pampaloni MH, Clarke JL et al (2015) Assessing biological response to bevacizumab using 18F-fluoromisonidazole PET/MR imaging in a patient with recurrent anaplastic astrocytoma. Case Rep Radiol 2015:731361PubMedPubMedCentralGoogle Scholar
  58. 58.
    Kickingereder P, Radbruch A, Burth S et al (2015) MR perfusion-derived hemodynamic parametric response mapping of bevacizumab efficacy in recurrent glioblastoma. RadiologyGoogle Scholar
  59. 59.
    Fraioli F, Shankar A, Hargrave D et al (2015) 18F-fluoroethylcholine (18F-Cho) PET/MRI functional parameters in pediatric astrocytic brain tumors. Clin Nucl Med 40:e40–e45CrossRefPubMedGoogle Scholar
  60. 60.
    Morana G, Piccardo A, Milanaccio C et al (2014) Value of 18F-3,4-dihydroxyphenylalanine PET/MR image fusion in pediatric supratentorial infiltrative astrocytomas: a prospective pilot study. J Nucl Med 55:718–723CrossRefPubMedGoogle Scholar
  61. 61.
    Shin HW, Jewells V, Sheikh A et al (2015) Initial experience in hybrid PET-MRI for evaluation of refractory focal onset epilepsy. Seizure 31:1–4CrossRefPubMedGoogle Scholar
  62. 62.
    Grouiller F, Delattre BM, Pittau F et al (2015) All-in-one interictal presurgical imaging in patients with epilepsy: single-session EEG/PET/(f)MRI. Eur J Nucl Med Mol Imaging 42:1133–1143CrossRefPubMedGoogle Scholar
  63. 63.
    Ding YS, Chen BB, Glielmi C et al (2014) A pilot study in epilepsy patients using simultaneous PET/MR. Am J Nucl Med Mol Imaging 4:459–470PubMedPubMedCentralGoogle Scholar
  64. 64.
    Yang Y, Hu W, Jiang S et al (2015) The emerging role of adiponectin in cerebrovascular and neurodegenerative diseases. Biochim Biophys Acta 1852:1887–1894CrossRefPubMedGoogle Scholar
  65. 65.
    O'Carroll CB, Rubin MN, Chong BW (2015) What is the role for intra-arterial therapy in acute stroke intervention? Neurohospitalist 5:122–132CrossRefPubMedPubMedCentralGoogle Scholar
  66. 66.
    An H, Ford AL, Vo KD et al (2014) Imaging oxygen metabolism in acute stroke using MRI. Curr Radiol Rep 2:39CrossRefPubMedPubMedCentralGoogle Scholar
  67. 67.
    Campbell BC, Mitchell PJ, Kleinig TJ et al (2015) Endovascular therapy for ischemic stroke with perfusion-imaging selection. N Engl J Med 372:1009–1018CrossRefPubMedGoogle Scholar
  68. 68.
    Grade M, Hernandez Tamames JA, Pizzini FB et al (2015) A neuroradiologist's guide to arterial spin labeling MRI in clinical practice. Neuroradiology 57:1181–1202CrossRefPubMedPubMedCentralGoogle Scholar
  69. 69.
    Yan L, Liu CY, Smith RX et al (2016) Assessing intracranial vascular compliance using dynamic arterial spin labeling. Neuroimage 24:433–441CrossRefGoogle Scholar
  70. 70.
    Catana C, Drzezga A, Heiss WD et al (2012) PET/MRI for neurologic applications. J Nucl Med 53:1916–1925CrossRefPubMedGoogle Scholar
  71. 71.
    Filippi M, Rocca MA (2011) MR imaging of multiple sclerosis. Radiology 259:659–681CrossRefPubMedGoogle Scholar
  72. 72.
    Banaszek A, Bladowska J, Pokryszko-Dragan A et al (2015) Evaluation of the degradation of the selected projectile, commissural and association white matter tracts within normal appearing white matter in patients with multiple sclerosis using diffusion tensor MR imaging–a preliminary study. Pol J Radiol 80:457–463CrossRefPubMedPubMedCentralGoogle Scholar
  73. 73.
    Gracien RM, Reitz SC, Hof SM et al (2015) Changes and variability of proton density and T1 relaxation times in early multiple sclerosis: MRI markers of neuronal damage in the cerebral cortex. Eur RadiolGoogle Scholar
  74. 74.
    Saake M, Langner S, Schwenke C (2015) MRI in multiple sclerosis: an intra-individual, randomized and multicentric comparison of gadobutrol with gadoterate meglumine at 3 T. Eur RadiolGoogle Scholar
  75. 75.
    Rudko DA, Solovey I, Gati JS et al (2014) Multiple sclerosis: improved identification of disease-relevant changes in gray and white matter by using susceptibility-based MR imaging. Radiology 272:851–864CrossRefPubMedGoogle Scholar
  76. 76.
    Bolcaen J, Acou M, Mertens K et al (2013) Structural and metabolic features of two different variants of multiple sclerosis: a PET/MRI study. J Neuroimaging 23:431–436CrossRefPubMedGoogle Scholar
  77. 77.
    Matías-Guiu JA, Cabrera-Martín MN, Matías-Guiu J et al (2015) Amyloid PET imaging in multiple sclerosis: an (18)F-florbetaben study. BMC Neurol 15:243CrossRefPubMedPubMedCentralGoogle Scholar
  78. 78.
    Torigian DA, Zaidi H, Kwee TC et al (2013) PET/MR imaging: technical aspects and potential clinical applications. Radiology 267:26–44CrossRefPubMedGoogle Scholar
  79. 79.
    Aiello M, Salvatore E, Cachia A et al (2015) Relationship between simultaneously acquired resting-state regional cerebral glucose metabolism and functional MRI: a PET/MR hybrid scanner study. NeuroImage 113:111–121CrossRefPubMedGoogle Scholar

Copyright information

© European Society of Radiology 2016

Authors and Affiliations

  1. 1.Department of Medical ImagingJinling Hospital, Medical School of Nanjing UniversityNanjingChina

Personalised recommendations